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Distribution of "Level Velocities" in Quasi-1D Disordered or Chaotic Systems with Localization
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The explicit analytic expression for the distribution function of parametric derivatives of energy levels
("level velocities" ) is derived for the chaotic quantum systems belonging to the quasi-1D universality
class (quantum kicked rotator, "domino" billiard, disordered wire, etc.).
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It is generally accepted nowadays that the problem of
a quantum particle moving in a random potential first
addressed in the context of Anderson localization has
much in common with such problems in the domain
of quantum chaos as "quantum kicked rotator" [1], the
ionization of Rydberg atoms by a microwave radiation
[2], and chains of quantum billiards (the "domino billiard"
[3]). This analogy first suggested in [4] proved to be very
fruitful for understanding the phenomenon of the so-called
"dynamical localization" [1].

More recently it was found that there exists a con-
venient mathematical framework —the ensemble of ran-
dom banded matrices (RBM), see [5,7] and references
therein —generalizing the classical Gaussian ensembles
of random matrices and allowing for a uniform descrip-
tion of the typical features common the above-mentioned
systems. Investigation of the RBM ensemble helped to
reveal a number of universal scaling relations character-
izing statistics of energy levels and eigenfunctions of all
these systems [1,5,6]. Another important feature is that
the stochastic RBM model can be mapped onto a regu-
lar field-theoretical model —a so-called nonlinear graded
o. model —allowing in some cases for an exact analyti-
cal treatment and so providing one with a powerful tool
of research [6,7]. This nonlinear o. model turns out to be
identical to that derived earlier by Efetov and Larkin in

the course of study of the Anderson localization in disor-
dered wires [8].

All these facts suggest the introduction of a notion
of a "quasi-1D universality class" of disordered and
chaotic systems. All statistical properties of systems
belonging to this class are dependent on the only scaling
parameter: the ratio x = L/$ between the sample length
L and the localization length g. The explicit form of the
scaling function was derived analytically for the so-
called inverse participation ratio measuring the extent of
eigenfunctions. For other quantities characterizing eigen-
function statistics, analytical results are avai1able in two
limiting cases x &) 1 (x « 1) corresponding to the com-
plete localization (delocalization) of eigenfunctions [6,7].
As to the statistics of energy levels, only heuristic expres-
sions deduced from the numerical data were available so
far [1].

Quite recently an interesting new development in the
study of weakly disordered metallic systems and their
chaotic counterparts has been made in a set of works by
the MIT group [10]. Developing earlier ideas from the
papers [11], the authors of [10] studied the energy level
motion as a function of some external tunable parameter
u. Physically the role of such a parameter can be played
by, e.g. , an external magnetic field, the strength of a scat-
tering potential for disordered metal, a form of confining
potential for quantum billiards, or any other appropriate
parameter on which the system Hamiltonian is dependent.
A high degree of universality in a "level response" of
a generic chaotic system to an external perturbation has
been revealed. It was found that a set of "level velocities"
(LV) v„(a) —= BE„/Bu, with index n labeling different
energy levels, can be characterized after a proper normali-
zation by universal correlation functions (v„(a)v„(u'))
whose form is dependent only on symmetries of the un-

perturbed Hamiltonian and those of perturbations. Re-
lated quantities characterizing energy level response, such
as the distribution of "level curvatures" K„—= B2v„/Bu2
and that of "avoided crossings" (local minima of adjacent
level spacings) were studied in the papers [11,12). Let
us also mention an intimate connection between the level
response characteristics and the system conductance if the
role of the perturbation is played by the Aharonov-Bohm
(AB) magnetic flux; see the detailed discussion of the is-
sue in [13].

Most of the analytic work on the level response char-
acteristics done so far has made use of the analogy
between quantum chaotic systems and random matrix en-
sembles, which is now a commonly accepted principle in
the domain of quantum chaos [14]. However, a simu-
lation of chaotic (disordered) systems by the classical
Gaussian random matrix ensembles (or equivalent mod-

els) precludes effects of Anderson localization from be-

ing taken into account. On the other hand, these effects
should considerably modify a11 the results when one deals
with systems belong to the quasi-1D universality class in-

troduced above. This indeed was found to be the case in
the numerical study of the curvature distribution for the
periodic RBM simulating a disordered ring threaded by
the AB flux [15].
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In this Letter I derive, for the first time, the distribution
of the level velocities for the systems belonging to
the quasi-1D universality class in the most interesting
limit of infinite sample length when the role of the
localization effects is expected to be maximal. As the
particular model of unperturbed system I use the ensemble
of nonperiodic Hermitian RBM simulating a quasi-1D
system (an isolated piece of wire, an irregular billiard
chain, etc.) subject to a sufficiently strong magnetic field.
The class of perturbation considered corresponds to a
slight change of scattering potential within the wire. For
this reason obtained results could not be straightforwardly

lim e TrR0 (E) TrR (E) = lim ge~0 0„[E—

applied to a periodic geometry and AB flux playing a
role of perturbation. The latter case calls for a separate
consideration.

Let us consider an unperturbed chaotic or disordered
isolated quasi-1D system of finite size L having N ~
L energy levels E„, n = 1,2, . . . , N and described by a
Hamiltonian 9f whose statistical properties are ade-

quately simulated by those of the RBM ensemble. Let
us study the level response to a perturbation BA = u V,
with a being a small parameter. For this purpose it is
convenient to introduce the resolvent operator R-(E) =
[E —9f —uV ~ ie] ', with e being a positive infini-
tesimal. Then one has the following self-evident identity:

(1)
En(0) + ie][E Em(u) ie]

It is well known that for the chaotic quasi-1D system
of any ftnite size the spectrum consists of the set of non
degenerate levels, the probability P(BE) for two adjacent
levels to be separated by a gap BE tending to zero when
BE 0 (see, e.g. , the so-called "Izrailev distribution"

[1] and the recent analytical results by Kolokolov on the
related subject [9]). Let us now impose the following re-
quirements: (i) the limiting procedure in Eq. (1) to be per-
formed prior to the thermodynamic limit L ~ ~ and (ii)
the parameter u ~ e 0 when performing the limiting
procedure. Then the only nonvanishing contribution to
the double sum in Eq. (1) is given by pairs of coinciding
level indices n = m. Introducing the notations p, = 2e/u
and v„= BE„/Bu) =0 one obtains

K(p) = lim eTrRO+(E)TrR2, t (E)
2 += n g 2

2" B(E —E„). (2)

Now performing formally the averaging over the en-
semble of Harniltonians 9f (denoted by the angular
brackets ( .)) and introducing the mean level density
p(E), one immediately finds the relation between K(p, )
and the distribution P(v) of the level velocities:

1
Re(K(p, )) = n. p,

2 dv
P(v)

Np —aoV+P
= m. p, e " dk 9'(v)coskvdv.

0 —00

(3)
The relations presented above are actually valid

for an arbitrary chaotic or disordered system. Let us
now specify the Harniltonian A as being a N X N
Hermitian random matrix with independent Gaussian
distributed entries 9f(i,j ) with zero mean and the
variance (A*(i,j)9f(i,j)) = a((i —j(/b)[1 + B;,.].
Here the function a(r) is assumed to vanish at r ~ ~ at
least exponentially fast, the parameter b (assumed to be
large: b » 1) defining, therefore, the effective bandwidth
of RBM.

In order to perform the ensemble average, I employ
Efetov's supersymmetric approach [8]. The detailed
exposition of the method as applied to the RBM ensemble
can be found in [7] and is not repeated here. After
performing all the necessary steps, the problem is mapped
onto a 1D nonlinear o. model with the action S[g] =
So[Q] + BS[g],where

So[g] = —g Str(gi —Q;+~) + i7rpe g StrgiA,
i=1 i=1

BS[g] = g —
I

— '

X g V(i~, i2)V(i2, i3) Vik, i~)Str

I I I I

m=1

1 —A
lm (4)

Here Str stands for the supertrace [8], the 4 x 4 matrices
Q; belong to the graded coset space U(1, 1/2)/U(1, 1) x
U(1, 1) [7,8], and A = diag(1, 1, —1, —1).

The nonlinear o. model with the action So[g] describes
the statistical properties of the unperturbed quasi-1D
system, and it was intensively studied in [6,7]. The main
parameter is the coupling constant y expressed in terms of
the RBM parameters as follows: y = (n.p)2/„a(r)r2 ~
b2 [6,7]. It defines the only characteristic spatial length
scale due to disorder: the localization length g ~ y. On
the more formal level it plays the role of the correlation
length of the matrix field Q;. That means that the matrices
Q; and Q, can be considered as equal to each other as long
as ~i

—j( && y. Let us now make a natural assumption
that the spatial structure of the perturbation V is of the
same type as that of the unperturbed Hamiltonian 9f, i.e.,
V(i, j) vanishes sufficiently fast as long as (i —j ~ && b.
We will call such a perturbation V the generic one. Then
in view of the relation 1 «b «b' ~ y, one can put
Q;, = Q;, = . . = g;, in the expression for BS[g].
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In view of the local-in-space structure of the last term
in Eq. (5), the corresponding integral over the matrices

Q; can be performed by the same transfer-matrix method
used earlier [6,7] with minor modifications. As the result
one finds ~ (K(p, )) = —„ l(x) where

d 7', d7 —y('
0 p y

X (x —r —ri, y)Yi )(r, ri, y), (6)

with both functions Y~'i(r, y) and Y~2()r, riy) satisfying
the same differential equation:

= QY; (7)

Here the "scaling" notations g = (p, /rrp) [y/2Vo]'
and x = N/2y were introduced for the sake of conve-
nience. Equation (7) should be supplied with the "initial"
conditions:

Y"'( = 0;y) = 1, Y'"(r = o «'y) = y Y'"(ri;y),

the first one corresponding to the elastic reflection of the
quantum particle at the sample edges and the second one
related to the details of the transfer matrix method [7].

In order to be able to deal with the function I(x)
efficiently, it is more convenient to consider its Laplace
transform IL(p) = fo e i' l(x)dx. One finds

IL (p) = —
YL (p; y) Yi. (p; y),

dy (&) (2)

o y
(9)

where the functions YL
'

(p, y) satisfy the system of two(&),(2)

From previous experience [6,7] one can anticipate that
the main contribution to the integrals over the matrix field
Q; is coming from the asymptotic domain Q; —1/ey as
long as e 0. As it will be clear afterwards, the essential
values of the parameter p, are of the order of p, —
max{y 'i2, iv' 'I }. For a generic random perturbation
one notices that Vo —= (V )(i, i) = g IV(i, m)I is a
deterministic (self-averaging) quantity of the order of
unity, whereas V(i, i) is a random quantity with zero
mean and variance of the order of (V(i, i)2) —Vp/b «
Vo. Combimng all these estimates together one arrives at
the final form for the effective action of the nonlinear cr

model:

s[Q] = s,[Q] ——
2 p,

x Str/Q;(1 —A)Q;(I —A).

ordinary differential equations:

6pY~ (p y) = ——, 6'&Y~ (p;y)

1 1+
gy2 4g2 y

= ——Yi (p;y);
(i)

p)+ —I.
y2 j (10)

where
a 1nI [z] (14)

Bz
Substituting this expression into Eq. (13) and remem-

bering the relation between (K(p,)) and l(x) one finds

One can write down the explicit solution to these
equations noticing that the two Whittaker functions
W g

~ (y/g) —= Pi"(y) and I g
~ (y/g) —= P2 (y) are eigen-

functions of the operator „corresponding to the
1

eigenvalue A„= —
4 (4p + 1 —x2), and the correspond-

ing Wronskian is equal to w„= —I [~ + 1]/I [g + (~ +
1)/2], where I [z] stands for the Euler gamma function.
Thus, one finds YL (p;y) = R(yYL (p;y)}, where

(2) (&)

(p; y) = —I'[I + g]W-, ii2(y/gl
&i)

p

+&(I —I [I + g]W-, , ii2(y/g)}, (11)
and the action of the opertor R on any function f(y) is
defined by (p = $4p + 1):

&Ã = 0,"(y) 0,"(z)f(.) —,,Wp P

+ 0 "(y) 0,"(z)f(z) , . —(»)dz

Expressions (10)—(12) provide a formal possibility
to find the function IL(p) for an arbitrary value of
p. Actually, however, manageable expressions could
be extracted only in the limiting case p ~ 0 physically
corresponding to the system length L being much larger
than the localization length g, i.e., x ~ L/g && 1. The
main simplification occurs if one notices that one can
neglect the second term in the expression for Y ')(p;y),
Eq. (11), provided p 0. As a result Eqs. (9) and (10)
can be presented in the form

I (p 0) = —g 2
—W-, i/2(z)Y' '(z),

I'[I + g)
p o z

1 B2 I' 1 g& Y"'(.) = —W-, , ii2(z), & = —
I

—+-
z

' '
Bz2 (4 z

(13)
Differentiating the identity 5 W g ill(z) = 0 over the

parameter g and using the condition Y121(z 0) = 0 one
obtains

Y"'() = —+ 0(1+g) W-, , i()

1
(K(p, )) I„„=g + —

g
—= — dk e g~P(g)»'~i (g) g

"
—,0 k/2

Np ()g 2 Qg 2 p slnh~klI 2)
(15)
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Introducing now the scaled level velocity v, =
v —

(2& )'l2 and comparing Eq. (15) with Eq. (3), one
restores the LV distribution function 'P(v, ) from its
Fourier transform:

"
dk k/2

P(v, ) = cos kv,
p 27T sinh k 2

{m.v, coth(m. v, ) —I]. (16)
sinh vr v,

This expression gives the explicit form of the LV distri-
bution for the case of long quasi-1D disordered or chaotic
system and is the main result of the present Letter.

Let us briefly mention that in the opposite limiting
case of short systems whose length L « g the effects of
localization play no role, and one easily reproduces the
Gaussian LV distribution typical for the chaotic systems
studied in earlier papers [10,12]. This fact can be most
easily checked by noticing that the solution to Eq. (7) in
the domain 0 ~ ~ ~ x && 1 is given by the expression

( yz
Y(r;y) = Y(r = 0;y)exp r~ y +—

~ (17)4g2)

that immediately produces the required result when sub-
stituted for Eqs. (3) and (6).

Comparing the two limiting cases one concludes that
the level velocities fluctuate much stronger when eigen-
functions are localized: (i) the probability of finding val-
ues of LV exceeding the typical value (v2) decays in
the case of extended states like e '", i.e., much faster
than a simple exponential typical for localized states, see
Eq. (16), and (ii) the mean square (v2) is proportional to
the inverse localization length I/g ~ I/7 when localiza-
tion takes place, i.e., is much larger than the value of the
order of inverse system size 1/L ~ 1/N typical for sys-
tems with extended states and the same number of levels
N. To this end it is interesting to note that in the papers
[10] the quantity (v2) was called the "generalized con-
ductance" in view of its meaning for the AB case [13].
The results obtained in the present paper suggest that the
level velocity of a disordered system subject to a random
perturbation is rather related to the so-called "inverse par-
ticipation ratio" which is inversely proportional to the
eigenfunction extent. A more detailed discussion of this
issue will be published elsewhere [16].

It is interesting to check all these predictions by a
direct numerical simulation of the systems belonging to
the quasi-1D universality class. In particular, for a chain
of chaotic quantum billiards (the domino billiard [3])one
should be able to observe a substantial increase in LV

fluctuations when passing from the regular chain to an

irregular one.
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