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Exact Results for Hamiltonian Walks from the Solution of the Fully Packed Loop Model on the
Honeycomb Lattice
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We derive the nested Bethe ansatz solution of the fully packed O(n) loop model on the honeycomb
lattice. From this solution we derive the bulk free energy per site along with the central charge and

geometric scaling dimensions describing the critical behavior. In the n = 0 limit we obtain the exact
compact exponents y = 1 and v = 1/2 for Hamiltonian walks, along with the exact value a2 = 3+3/4
for the connective constant (entropy). Although having sets of scaling dimensions in common, our
results indicate that Hamiltonian walks on the honeycomb and Manhattan lattices lie in different
universality classes.

PACS numbers: 05.50.+q, 64.60.Cn, 64.60.Fr

The configurational statistics of polymer chains have
long been modeled by self-avoiding walks. In the low-

temperature limit, the enumeration of a single self-
attracting polymer in dilute solution reduces to that of
compact self-avoiding walks. A closely related problem
is that of Hamiltonian walks in which the self-avoiding
walk visits each site of a given lattice and thus completely
fills the available space. Hamiltonian walks are directly
related to the Gibbs-DiMarzio theory for the glass tran-

sition of polymer melts [1]. More than thirty years ago
now, Kasteleyn obtained the exact number of Hamilton-
ian walks on the Manhattan oriented square lattice [2].
More recently this work has been significantly extended
to yield exactly solved models of polymer melts [3]. The
critical behavior of Hamiltonian walks on the Manhattan
lattice has also been obtained from the Q = 0 limit of the
Q-state Potts model [4]. In particular, this Hamiltonian
walk problem has been shown [3,4] to lie in the same uni-

versality class as dense self-avoiding walks, which follow
from the n = 0 limit in the low-temperature or densely
packed phase of the honeycomb O(n) model [5, 6].

As exact results for Hamiltonian walks are confined to
the Manhattan lattice, the behavior of Hamiltonian walks
on nonoriented lattices, and the precise scaling of compact
two-dimensional polymers, remains unclear [7—9]. The
exact value of the (Hamiltonian) geometric exponent

g 19
was conjectured to be yH = y, where y~ = —,6

was extracted via the Coulomb gas method for dense
self-avoiding walks [6,8]. However, recent numerical
investigations of the collapsed and compact problems are
more suggestive of the value yH = 1 [9—11].

More recently, Blote and Nienhuis [12] have argued
that a universality class different from dense walks gov-
erns the O(n) model in the zero temperature limit (the
fully packed loop model). Based on numerical evidence
obtained via finite-size scaling and transfer matrix tech-
niques, along with a graphical mapping at n = l, they
argued that the model lies in a new universality class char-

acterized by the superposition of a low-temperature O(n)
phase and a solid-on-solid model at a temperature inde-

pendent of n. This model is identical to the Hamiltonian
walk problem in the limit n = 0. In this Letter we present
exact results for Hamiltonian walks on the honeycomb
lattice from an exact solution of this fully packed loop
model. We derive the physical quantities which character-
ize Hamiltonian walks on the honeycomb lattice. These
include a closed form expression for the connectivity, or
entropy, and an exact infinite set of geometric scaling
dimensions which include a conjectured value by Blote
and Nienhuis [12]. Our results settle the above-mentioned
controversy in favor of the universal value y" = l.

In general, the partition function of the O(n) loop model
can be written as

where the sum is over all configurations of closed
and nonintersecting loops covering 3Vt, bonds of the
honeycomb lattice, and 3V is the total number of lattice
sites (vertices). Here the variable t plays the role of the

O(n) temperature, n is the fugacity of a closed loop, and

3Vz is the total number of loops in a given configuration.
For the particular choice t = t„where [5]

t,'-. = 2 ~ 42 —n.

the related vertex model is exactly solvable with a Bethe
ansatz type solution for both periodic [13—15] and open
[16] boundary conditions. This critical line is depicted
as a function of n in Fig. 1. Here we extend the exact
solution curve along the line t = 0, where the only
nonzero contributions in the partition sum (1) are for
configurations in which each lattice site is visited by a
loop, i.e., with 3V = 3Vq [17]. This is the fully packed
model recently investigated by Blote and Nienhuis [12].

We consider a lattice of 3V = 2MN sites as depicted in

Fig. 2, i.e., with periodic boundaries across a finite strip
of width ¹ The allowed arrow configurations and the
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corresponding weights of the related vertex model are
shown in Fig. 3. Here the parameter n = s + s
2 cosA. In Fig. 2 we also show a seam to ensure that loops
which wrap around the strip pick up the correct weight
n in the partition function. The corresponding weights
along the seam are also given in Fig. 3 [18]. We find that
the eigenvalues of the row-to-row transfer matrix of the
vertex model are given by
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A =
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FIG. 1. The exact solution curve t = t, (2) of the O(n) model
on the honeycomb lattice as a function of n. In this Letter we
extend the exact solution curve along the line t = 0.
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Here the seam parameter e = A for the largest sector,
and e = 0 otherwise. Apart from the seam, this exact
solution on the honeycomb lattice follows from earlier
work by Baxter on the colorings of the hexagonal lattice
[19]. Baxter derived the Bethe ansatz solution and
evaluated the bulk partition function per site in the
region n ~ 2. The corresponding vertex model was later
considered in the region n & 2 with regard to the polymer
melting transition at n = 0 [20].

More generally, the fully packed loop model can be
seen to follow from the honeycomb limit of the solvable
square lattice A2 loop model [21,22]. Equivalently, the

(1)

related vertex model on the honeycomb lattice is obtained
in the appropriate limit of the A2 vertex model on the

(1)

square lattice in the ferromagnetic regime. This latter
model is the su(3) vertex model [23]. One can verify
that the above results follow from the honeycomb limit
of the algebraic Bethe ansatz solution of the su(3) model
[24] with appropriate seam. It should be noted that
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FIG. 2. The periodic honeycomb lattice of width L. Dashed
lines indicate the position of the seam.
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FIG. 3. (a) The allowed arrow configurations and their cor-
responding vertex weights. (b) The modified vertex weights
along the seam.
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Reshetikhin [22] has performed similar calculations to
those presented here, although in the absence of the
seam, which plays a crucial role in the underlying critical
behavior.

Defining the finite-size free energy as fjv
= N ' 1nAO,

we derive the bulk value to be
"

sinh Ax sinh(m. —A)x

x sinh7rx sinh3Ax

This result is valid in the region 0 & A ~ m. /2, where the
Bethe ansatz roots defining the largest eigenvalue Ao are
all real. We note that the most natural system size N is
a multiple of 3, for which the largest eigenvalue occurs
with rI = 2N/3 and rq = N/3 roots. In the limit A 0,
f reduces to the known n = 2 value [19,13]

3I'(1/3)
4m. ~

There is, however, a cusp in the free energy at A = m. /2.
For A & m. /2, the largest eigenvalue has roots 8 shifted
by im/2 .Th.e result for f is that obtained from (6)
under the interchange A ~ m —A, reflecting a symmetry
between the regions —2 ~ n + 0 and 0 ~ n ~ 2. Thus
the value (7) holds also at n = —2, in agreement with the
t, 0 limiting value [13].

As our interest here lies primarily in the point n = 0
(A = m. /2), we

confine

our

attentio to the region 0 ~ n ~
2. At n = 0, we find that the above result for f can be
evaluated exactly to give the partition sum per site, ~, as

' = 3m~/4, (8)
and thus ]c = 1.13975.. . follows as the exact value for
the entropy or connective constant of Hamiltonian walks
on the honeycomb lattice. This numerical value has been
obtained previously via the same route in terms of an
infinite sum [25]. Our exact result (8) is to be compared
with the open self-avoiding walk, for which p, z = 2 + +2
[5], and so p, = 1.84775. . . . It follows that for self-
avoiding walks on the honeycomb lattice, the entropy loss
per step due to compactness, relative to the freedom of
open configurations, is exactly given by

&
ln

3&3
42+ 2

The central charge c and scaling dimensions X; defining
the critical behavior of the model follow from the domi-
nant finite-size corrections to the transfer matrix eigenval-
ues [26]. For the central charge,

fN=f-+ 6N, (10)

The scaling dimensions are related to the inverse correla-
tion lengths via

g,
' = In(AO/A;) = 2n. gX;/N. (11)

Here g = +3/2 is a lattice-dependent scale factor.
The derivation of the dominant finite-size corrections

via the Bethe ansatz solution of the vertex model follows

c = 2 —6(1 —g)'/g . (13)
This is the identification made by Blote and Nienhuis [12].
At n = 0 we have g = 1/2, and thus c = —l. On the
other hand, both Hamiltonian walks on the Manhattan
lattice [3,4] and dense self-avoiding walks [6] lie in a
different universality class with c = —2. However, as we
shall see below, they do share common sets of scaling
dimensions and thus critical exponents. This sharing of
exponents between the fully packed and densely packed
loop models has already been anticipated by Blote and
Nienhuis in their identification of the leading thermal and
magnetic exponents [12]. Here we derive an exact infinite
set of scaling dimensions.

Of most interest is the so-called watermelon correlator,
which measures the geometric correlation between L
nonintersecting self-avoiding walks tied together at their
extremities x and y. It has a critical algebraic decay

(AL(»)4 Lb)), —I» —sl '", (14)
where XL is the scaling dimension of the conformal source
operator PL(») [6]. As along the line t = t„ these scaling
dimensions are associated with the largest eigenvalue in
each sector of the transfer matrix. The pertinent scaling
dimensions follow from the more general result

i (p p
)

(1 —g)'
X = &g(nI + n~ —nInp)—

2g

The sectors of the transfer matrix are labeled by the Bethe
ansatz roots via L = nI + nq. The minimum scaling
dimension in a given sector is given by n& = nz = k for
L = 2k and ni = k —1, nq = k or ni = k, nq = k —1

for L = 2k —1. Thus we have the set of geometric
scaling dimensions XL corresponding to the operators PL
for the loop model,

(15)

Xpg ~
= ~g(k k + 1)

(1 —g)'
2g

(1 —g)'
Xzj = qgk

2g

(16)

(17)

that given for the su(3) model in the antiferromagnetic
regime [27] (see, also [28]). The derivation is straight-
forward though tedious, and we omit the details. In the
absence of the seam, we find that the central charge is
c = 2 with scaling dimensions X = 5(+~ + 5( ~, where

1
b, ~-~ = gnr-Cn + —(h ) C 'h — nh-, (12)

C is the su(3) Cartan matrix, and n = (nI, nq) with n~

and nq related to the number of Bethe ansatz roots via
rI = 2N/3 —n~ and rq = N/3 —nq [29]. The remaining
parameters h- = (h&, hz ) define the number of holes in
the root distribution in the usual way [27]. We have
further defined the variable g = 1 —A/m. .

With the introduction of the seam e = A, we find that
the central charge of the fully packed O(n) model is
exactly given by

2648



VOLUME 73, NUMBER 20 PHYSICAL REVIEW LETTERS 14 NovEMBER 1994

where k = 1, 2, . . . . The magnetic scaling dimension is
given by X = X&, which agrees with the identification
made in [12]. The eigenvalue related to X2 appears in the
nd = 2 sector of the loop model, i.e., with two dangling
bonds [12]. At n = 0 this more general set of dimensions
reduces to

X2p &

= 4(k —k), (18)
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