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Structure and the Failure of the Linear Theory of Continuous Ordering
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We present the results of numerical investigations of Ising models undergoing continuous ordering
which indicate, for systems with large but finite interaction range R, that the time interval during which

the linear theory of Cahn, Billiard, and Cook fits the simulation data depends strongly on the length
scale of observation. We associate the initial linear theory deviation at small length scales with the

appearance of isolated structures or domains which form after a quench into the unstable region of
thermodynamic space. These domains cannot be described by a linear theory; this implies, in contrast
to earlier results, that the linear theory "breakdown" cannot be obtained by investigation of the linear
itself for inconsistencies.

PACS numbers: 05.50.+q

Spinodal decomposition (SD) [1]and continuous order-

ing (CO) are the processes by which systems quenched
into unstable regions of thermodynamic space begin the
evolution to equilibrium. The (CO) SD process describes
the evolution in systems in which the order parameter is
(not) conserved. These processes are paradigms for un-

derstanding many aspects of nonlinear evolution, and in-
formation about the underlying mechanisms will not only
be valuable to material scientists but will aid considerably
in understanding similar processes in several fields.

The first theory to describe these processes was the
linear theory of Cahn, Hilliard, and Cook (CHC) [2—4),
which begins with the nonlinear Langevin equation [5]

aP(x, t) —Mr& R'V-"y(x, t) + 2-.@(x,t)at
+ 4P'(x, t) —h] = g(x, t) . (1)

In Eq. (1)M is a mobility, assumed to be constant, I = —1

for CO and V2 for SD, R is the interaction range, P(x, t)
is the coarse-grained order parameter, and h is an applied

field. The Gaussian noise satisfies (g(x, t)) = 0 and, since
all lengths mustbe scaled by R ', (71(x/R, t)g(x'/R, t')) =
(k&T/Rd)8(x —x'/R)b(t —t'), where ktt is Boltzmann's
constant and T is the temperature. The delta function must
scale as R " in order to be normalized, which implies that

g(x, t) = g(x/R, t)/Rdt' Equation . (1) is linearized by
assuming P(x, t) = Pp(t) + u(x/R, t)/Rd12 where Pp(t)
is, in general, a function of time and u(x/R, t)//Rdt2 is
assumed to be small. If we consider a critical quench for
simplicity, then Pp(t) = 0, h = 0, and the linearized form
of Eq. (1) is

Bu(x/R, t) —MI [ RV u(x/R, t) ——2!e!u(x/R, t)]
Bt

= q(x/R, t), (2)

where we have assumed that e(T —T,)/T, ~ 0. In this
Letter we will restrict our discussion to CO but these
considerations also apply [6] to SD. Setting I' = —1 and

!
M = 1, we obtain for u(x/R, t)

Ix —x'I'
R2t

u(x/R, t),up(x'/R)
x

1 xp 2e t

+ d dx dt'exp 2!e!(t —t')—
(Kt )

Ix —x'I' g(x/R, t')
R'(t —t') R 1'
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where D is a constant that depends on d, and uo(x'/R)/R
is the order parameter at the quench. The structure fac-
tor is obtained from Eq. (3) by Fourier transforming the
ensemble average (u(x/R, t)u(x'/R, t'))/R" with respect to

I

From Eq. (3) it is clear that the assumption that

u(x/R, t)/Rd~2 is small cannot be valid for all time. In-
deed, Binder using a Ginzburg criterion [7] has pointed out
that the time interval during which CHC is self-consistent
should scale with the interaction range as logR.

Clearly the linear theory is never exact. However, the
proposal that it might be a reasonable fit for the structure
factor data for time intervals that scaled as logR has been
tested via Monte Carlo simulation [8,9] and experimen-
tally [10,11] with some success. There are some experi-
mental indications though that the initial deviations of the
data from the predictions of the linear theory appear [12]
at large ~k~, which earlier simulations did not probe. The
importance of this observation is that it has implications
for the early evolution of real-space structures, and these
structures may have an important effect on both materials
properties and subsequent nonlinear evolution.

In order to investigate the "breakdown" of the linear
theory, particularly for large ~k[, we have carried out
a series of simulations of two-dimensional Ising models
with long-range interactions. In these simulations we
have correlated the breakdown of the linear theory with
the appearance of isolated structures that initiate the
evolution of unstable growth. We find, in contrast to the
result in Refs. [7—9] that the linear theory has no time
scale over which it fits the data over the entire range of ~k ~

and that the larger the value of [k[ the earlier the structure
factor deviates from the prediction of the linear theory.

Our initial investigations centered on a careful study of
the breakdown time for systems quenched from infinite
temperature. We measured the structure factor, averaged
over 48 realizations, in two-dimensional Ising models
with interaction ranges of 7 and 15. Using a Metropolis
algorithm we equilibrate the system at T = ~. At time

2
t = 0 we instantaneously quench to 3T, and compare
the measured structure factor with the one obtained from
the solution of Eq. (2), for several values of the wave
number ~k[ = 2nnR/L, where .L is the linear system
size, and n is an integer. We note the time at which
the predictions of the linear theory are outside of the
error bars of the measured structure factor. In Fig. 1

we plot the breakdown time tb vs nR. As can be seen
from the figure, the time of deviation from the linear
theory remains essentially fiat for small ~k~ but above
some critical value tb decreases with increasing n. This
is consistent with the experimental indications [12].

In order to understand what these results imply about
structure we used the fact that the linear theory of SD
and CO can be mapped onto a cluster growth model
[13]. In the long-range Ising models we have simulated
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FIG. 1. The time tb that the structure factor data deviates
from the fit to the linear theory as a function of nR, where
~k( = 2n nR/L, and L = 512 is the linear system size.

that this mapping takes the form of randomly assigning a
bond with a probability pb = 1 —exp( —2K) [here K =
J/k8Tq, J is the Ising coupling constant, and q = (2R +
1)"], between spins of the same sign that are separated by
a distance less than the interaction range R.

With this cluster definition, the critical point of the P~
theory in Eq. (1) is also a percolation transition [13]. For
critical quenches, the cluster configuration changes from
no infinite clusters above the critical temperature T, to
two infinite clusters, one up and one down, below T, .
These clusters are highly interpenetrating, and we stress
that this picture is only valid for large R, hence, mean
field. Moreover, the percolation transition occurs at the
time of the quench when the spin configurations are those
associated with the system in equilibrium prior to the
quench, while the bond probability uses the temperature
to which the system is quenched. These percolation
transitions have been found numerically and will be
described in detail in a future publication [14].

We use this mapping to investigate the structure. The
simulations proceed as follows. As before, we equilibrate
an Ising model with interaction range R && 1 at T = ~,
using a Metropolis algorithm. At t = 0 we lo~er the

2
temperature to T = 3T, . Between each update of the

Ising spins we place bonds at random with the probability

pb, given above, and measure the cluster properties. We
repeat the random bond distribution N times between spin
updates.

The primary variable we measure is fl(x, t), the fraction
of N bond realizations for a fixed spin configuration
that the spin at x belongs to either infinite cluster. At
the quench time t = 0, fI(x, 0) is a spatial constant.
As the spins are updated and the system begins to
evolve, isolated regions of increased fl(x, t) emerge,
i.e., regions with increased probability of belonging to
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FIG. 2. Isolated regions of enhanced probability of belonging
to the up or down infinite cluster. The system size L = 512,
and the interaction range R = 7. At t = 0.5 MCS, there are
only isolated domains. At t = 1 MCS, the domains have begun
to coalesce. At t = 1.5, the domains have not percolated, while
at t = 2.5 they have. At t = 2 (not shown), the domains have
almost percolated in this run if we demand that percolation is a
connected cluster that spans the system.

an infinite cluster, or equivalently, regions of increased
magnetization. Until ft(x, t) in these regions exceed a
threshold of order R "/' they are not unstable domains
but are "equilibrium fluctuations" (see below). Hence, our
domains are regions of ft(x, t) that exceed a threshold of
order R "t~. Figure 2 shows several of these enhanced
probability areas at various times after the quench for
an Ising model with interaction range R quenched from
T = ~ to T = 3T These are also regions of increased
density of either up or down spins.

White areas indicate the absence of fluctuations which
exceed threshold (see below). Black (grey) indicates
an enhanced probability of belonging to the up (down)
infinite cluster. The time evolution of ft(x, t) indicates an
increasing probability of belonging to the infinite cluster.
We have measured the diameter of the domains when they
first appear, and they are approximately the size of the
correlation length g = Re

To get a better understanding of these enhanced do-
mains and the threshold we can view the expression for
u(x/R, t)/Rdt~ in Eq. (3) as describing localized regions
whose distribution is governed by the Gaussian noise.
These regions are isolated for some time because the in-
stability in Eq. (1) and (2) can only amplify fluctuations

greater than a certain threshold. This conclusion follows
from the observation that after the quench the system is
at the top of a maximum in the Landau-Ginzburg free
energy. In order for the instability to kick in, the sys-
tem must "know" that it is at a maximum rather than
at a minimum. This requires that a fiuctuation of the
linear dimension of the equilibrium correlation length g
have an order-parameter change whose square is greater
than the susceptibly. This leads to a criterion similar
to the standard Ginzburg criterion, i.e., u~ —gr/gd or
u —(e(" ~it4/R"t~ H. ere u is the order-parameter den-

sity in a domain. Also note the scaling with R / con-
sistent with q(x, t) in Eq. (2). In d = 2, u —1/R is the
threshold below which fluctuations are still in "equilib-
rium. " Clearly u 0 as R

Using the idea that fluctuations of the magnetization in
mean field models can be described as a random walk in
order-parameter space [15] with a step size g d, we can
estimate (from u~) the time r it takes for the domains
to begin to interact to be of the order r —[e[ 'gd in

spin flips or (e~
' in Monte Carlo steps (MCS). Note that

this time is independent of R. When the average random
walk reaches the threshold magnetization, the system will

consist of domains that are close enough to affect each
other, and the random walk picture will begin to break
down and the domains coalesce. Another prediction that
follows from the random walk model is that the initial

appearance of the domains can be understood from the
dispersion in the random walk. A simple calculation leads
to the prediction that for times small compared to r the
number of domains will grow linearly with time.

In Fig. 3 we plot the number of domains as a function
of time for three different interaction ranges. Note
that the domains are strongly coalescing at 7 —1 MCS
independent of R, and the initial increase in the number
of domains is linear with a slope independent of R.

We make the following observations: (1) During the
evolution immediately after the quench isolated domains
appear in which the density of up or down spins varies

significantly from the initial value of z. (2) The domain
diameter when it first appears is, within numerical error,
equal to L/nR at the value of nR (from Fig. 1), corre-
sponding to the t = 0 breakdown. (3) From Fig. 1 we can
separate the breakdown times tb into two groups. From
tb = 0 until about 2 MCS, the tb associated with the devi-
ation from the linear theory is related approximately lin-
early to ~k(. Therefore, deviations from the linear theory
have only appeared in our analysis for )k) ) [k),„(t).
At approximately 2 MCS, the entire range 0 ~ [k) &
[k[,„(t= 2) goes nonlinear simultaneously. (4) At about
2 MCS, the growing domains which were previously iso-
lated percolate, providing regions of increased density on
all length scales.

We conclude from these observations that the isolated
domain structures are the location of the initial evolution
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FIG. 3. The density of clusters of enhanced regions as a
function of time. The increase is linear and the decrease is
due to coalescence. The system size L = 512.

away from the linear regime which accounts for the
structure factor deviation at large ~k~. Moreover, the
percolation transition of the domains is responsible for
the instantaneous increase in the range of ~k~ for which
deviation from CHC occurs.

The results also imply that the CHC linear theory
has no interval of validity for any finite R, since the
isolated domains appear during the initial evolution after
the quench and the time they first appear is independent of
R (Fig. 3). This result is significantly different from those
obtained [7] earlier in two ways. First, it predicts that the
linear theory is fundamentally flawed for any time after
the quench for finite R. Second, that the time of the initial
deviation depends on the length scale, or equivalently,
the [k~ vector probed. More precisely, localized domains
will form at t = 0 inside of which the linear theory no
longer applies. From the rather weak dependence of tb

on R for [k( ( )k[,„(t= 2) (Fig. 1) after the domains
have percolated, we speculate that the Ginzburg criterion
proposed by Binder [7] applies for this range of ~k~.

We stress that this is a new view of the early stage mor-

phology of system undergoing CO and the first connec-
tion, to our knowledge, between real-space structure and
the breakdown of linear theories. We have performed sim-
ulations with spin-exchange dynamics which indicate [6]
that the same initial evolution of domains occurs for spin-
odal decomposition. That is, the early morphology of Ising
models with long-range interactions undergoing spinodal
decomposition is indistinguishable from that in Fig. 2. In

addition, we have investigated the effect on our conclu-
sions of taking into account higher-order derivatives (V,
etc.) in the CHC equations [6]. While the fits are better,
the same qualitative behavior emerges, i.e., the CHC the-

ory deviates from the data at high wave numbers first.
In conclusion, we have presented a new picture of the

morphology of the early stage of evolution in systems
quenched into the unstable region of the phase diagram.
In addition, we have argued that the CHC theory is not
valid for any time after the quench although it may re-
main a good approximation for small ~k~ for t —logR, as
proposed by Binder. We have also proposed an expla-
nation for the [k~ dependence of tb seen experimentally.
Finally, we believe that the understanding of the linear
regime morphology and its relation to the breakdown of
CHC will aid in formulating a more complete nonlinear
theory than those currently available.
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