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Random Exchange Heisenberg Chain for Classical and Quantum Spins
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The Heisenberg chain with random ~J bonds is studied for the quantum spin s = I/2 and in the
classical limit. The former is treated by high-temperature expansion and transfer matrix calculation
while the latter can be analyzed exactly. The disorder leads to a 1/T behavior of the low-temperature
susceptibility in the classical system. For s = 1/2 our analysis reveals a significant residual entropy
at low temperature. From this we conclude that for quantum spins the susceptibility exhibits three
different regimes in temperature and that the specific heat has a peak in the very low-temperature
regime.

PACS nombers: 75.10.Hk, 75.10.JI, 75.10.Nr

For many decades the spin chains have attracted much
attention in condensed matter physics and statistical
mechanics. In recent years one-dimensional (1D) spin
systems have become accessible to experimental in-

vestigation. A class of such systems is realized in
materials like Sr3CuPt06 which represents an antiferro-
magnetic chain of the Cu spins (s = 1/2) [1]. Another is
Sr3CuIr 06 in which the spins of Cu and Ir, both s = 1/2,
couple ferromagnetically. It is possible to produce alloys
SrCuPt~ pIrp06, systems of quenched bond disorder.
In some alloys it was observed that the susceptibility is
proportional to 1/T over practically the whole temperature
range [2]. Motivated by these experiments, we consider
here a simplified model of these systems, a spin-1/2 chain
given by the Hamiltonian

L—1 L —1

9f = g J;S; S;+, —p, H, g S,', (1)
t=0 i=0

where all bonds J; have the same strength, but random
sign, i.e., their probability distribution is given by P(J; ) =
pB(J; + J) + (1 —p)8(J; —J) for 0 ~ p ~ 1 and J &
0. The limit p = 0 corresponds to the uniform antifer-
romagnetic (AF) and p = 1 to the uniform ferromagnetic
(FM) Heisenberg chain. The magnetic field H, is uniform.

In recent theoretical studies of random spin chains
mainly systems with weak disorder have been discussed
[3]. Obviously, the quenched disorder is not weak in our
case, since 1 gives the only energy scale in the problem.
Therefore, methods applied to models with weak disorder
may not lead to satisfactory descriptions in this case.
%e tackle this problem in two ways. First, we discuss
the physical properties for the case of classical spins,
where exact results can be obtained. Second, we focus
on the quantum spin-1/2 system by means of a high-
temperature expansion and transfer matrix calculations of
some physical quantities.

The classical random bond spin problem can be mapped
to the ferromagnetic spin chain problem by introduc-

ing "staggered" spins, S; = S; PI:o sgn( —Jt). Thermo-
dynamic quantities such as the internal energy are then

independent of bond disorder as is given by Fisher's exact
solution [4]. These staggered spins develop a long cor-
relation length g at low temperature. The original spin
correlation function and susceptibility can be calculated
exactly using an extension of Fisher's method. In par-
ticular, the two-spin correlation function I'(i —j) can be
written as a product of functions v(K) over ail bonds be-
tween sites i and j (i ~ j):

with v(K;) = coth(2K;) —1/2K; and K; = J;sz/ksT.
It is straightforward to obtain the correlation function
averaged over the bond disorder: I'(i —j) = [v(K)]~' J~,

where v(K) = JdJ;P(J;)v(K;) = (2p —l)v(K). Thus
the average correlation length is given by $ = —1/
In [v (K)]. This leads to the susceptibility per spin
(L ~ oo)

L —1

For T 0 we find

X(T) = (4)
p, s p —(2p —I)/4K
3ksT 1 —p + (Zp —1)/4K

The susceptibility approaches a constant value, JI(T
0) p, 2/12J for p = 0 (AF) and diverges quadratically,
g(T ~ 0) ~ 4p, s J/3kBT for p = 1 (FM). For all in-
termediate values of p we find a Curie-like singularity

g(T) = C(p)/T with C(p) = p, 2s2p3/k(tt1 —p). Hence,
there is in general a crossover between the 1/T depen-
dence of the high-temperature (HT) regime with Jt (T) =
p, zsz/3k&T, independent of p, and a low-temperature (LT)
regime with a p-dependent constant (see Fig. 1).

This effect can be easily understood by the following
argument. In the HT limit all spins act independently.
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FIG. 1. Inverse susceptibility for p = 0, 0.25, 0.5, 0.75, and
1 for the classical spin chain.

Turning to lower temperatures the staggered spins become
gradually correlated on the length scale g(T) which is the
correlation length of the staggered two-spin correlation
function I'(i —j) = (S,'S,') = [v(K)]~' '~, independent of
p. Within the length g(T) the spins act essentially as
one large spin degree of freedom whose magnitude is
determined by the bond disorder.

Let us consider the example of very small p, i.e., an AF
chain with only few FM bonds. In the LT regime each
FM bond leads to an excess spin s which contributes to
a large effective spin within the length g(T). Since these
excess spins can be randomly up or down depending on
the relative position of the FM bonds, the effective spin
is S = s[g(T)p]'/2, where gp is the average number of
FM bonds on a chain of length g. These effective spins
behave independently, yielding a susceptibility per site

S2p2 +2$2p

3k@TQ(T) 3k' T

The length g(T) cancels so that it does not appear in the
final result for g(T). A similar argument applies for the
nearly FM chain where the effective spins formed by finite
FM segments of aligned spins: g(T) —p s /3ksT(I—
p). As a consequence of this picture we expect the mag-
netization to become nonlinear on a magnetic field scale
H, such that H, S = H, s[g(T)p/(I —p)]'/2 is compa-
rable to k~T. This suggests an experimental method to
measure g(T) directly.

We turn now to the quantum spin model. For the treat-
ment of this system we use high-temperature cluster ex-
pansion, where physical quantities can be easily averaged
over the random ~J-bond distribution for any value of p.
For our 1D spin-1/2 chain we calculate a series of the
internal energy u(K) up to 22nd order in K and to 11th or-
der for g. Additionally, we performed a numerical trans-
fer matrix calculation for p = 1/2 in order to compare the
results of both methods. A lattice of 400 sites has been
used with up to 9 Trotter slices. The disorder average has
been taken over 20 samples. Details of these calculations
will be published elsewhere.

First, we investigate the properties of the susceptibil-
ity for the quantum spin chain. For the uniform chain
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FIG. 2. Inverse susceptibility for p = 0, 0.25, 0.5, 0.75,
and 1 for the quantum spin chain obtained by two-point
Pade approximation. Inset: Inverse susceptibility of the spin-
1/2 and spin-1 chain for p = 1/2. The solid lines are the
approximations from the high-temperature expansion and the
filled dots are the results obtained by transfer matrix calculation.
The two methods show very good agreement.

the LT behavior is well known: g(T 0) p, /~ (AF)
and g(T 0) p2J2/8ksT2 (FM). Guided by the prop-
erties of the classical system we assume that bond disorder
introduces a 1/T dependence in the LT regime. For a cer-
tain range of p the function f(K) = Tg(T) is monotonic,
so that the coefficients gs C(p)/ks = lim& pTg(T) =
lime f(K) occur as poles in the inverted function K(f)
Analyzing the corresponding series by standard methods

[5], we obtain the following approximate form of g for
0& p & landT~O:

2

~( 'P) =
8k T I- (6)
SkgT 1 —p

while for T ~, g(T, p) = IJ„2/4k&T. In Fig. 2 we

plot the overall temperature dependence of the inverse
susceptibility. There is a qualitative difference between
the classical and the quantum systems, which is illustrated
best for the case of p = 1/2. While the classical system
does not show a crossover (Fig. 1), the quantum spin
chain exhibits a clear regime change around K —1

between the HT and LT 1/T behavior (see the inset
of Fig. 2 for the results of the HT expansion and the
transfer matrix calculation). The ratio of the coefficients
for HT (C ) and LT (Co) regimes is C /Co = 2. Hence
the effective large spin introduced above to explain the
behavior of the classical system is reduced so that smaller
effective spins contribute to the magnetic response in the
LT regime of the quantum system. For comparison we
have also analyzed the spin-1 chain at p = 1/2, where
we find that the ratio C /Co = 3/2 (Fig. 2, inset). This
demonstrates that we approach gradually the classical
limit, C /Co = 1, with increasing spin. In the following
analysis, however, we will show that Eq. (6) is valid only
in an intermediate temperature regime rather than in the
zero-temperature limit.

In contrast to the behavior of the classical system, the
thermodynamic properties are strongly affected by the
presence of disorder in the quantum spin chain. Us-
ing various schemes for the analysis of series we have
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TABLE I. The exponent a as a function of p determined by
a modi6ed ratio method.

p 0.0 O.S 0.7 0.75 0.8 1.0

2.8 ~ 0.6 3.3 ~ 0.8 4.5 ~ 1 5.7 ~ 1 0.5

evaluated the internal energy u assuming u(T) —u(0) ~
T'+ [5]. It is well known that the exponent is u = 1

for the uniform AF and u = 1/2 for the uniform FM sys-
tem. For some values of p in the range 1/2 ~ p ~ 1

we obtain estimates of u from our series by ratio method
(Table I). Using the information about u in a two-point
Pade approximation [5], we plot the overall temperature
dependence of the specific heat (Fig. 3). The quality of
these approximations is demonstrated by the compari-
son with data obtained from finite size calculations by
Blote [6] for p = 0, 1 and by our transfer matrix calcu-
lation for p = 1/2. The agreement is very good down
to temperatures ksT = J/5. The form of the Pade ap-
proximants suggests that the density of states behaves as
p(co) ~ cu

' for small ~ which we believe to be valid
for an intermediate-energy scale. Hence, the large val-
ues of u for 0 & p ~ 1 (Table I) indicate a depletion of
the density of states in this energy scale which is still ac-
cessible by our high-temperature expansion treatment. In
the following we wi11 show that this interpretation is in-
deed reasonable. However, we also find an enhancement
of the density of states for the very low-energy scale; i.e.,

random exchange coupling leads to a redistribution of the
density of states from the intermediate- to the low-energy
regime.

The analysis of the entropy S = Jo dT(C/T) shows
that the sum rule S = ksln2 per site is not satisfied
in our result for 0 & p & 1. Entropy is missing in
our approximants: AS/S = 10% fol' p = 0.25, 23% foi'

p = 0.5, and 36% for p = 0.75. As our calculation
methods provide reliable results down to kBT —J/5, we
expect that the missing entropy is "hidden" at lower
temperatures. (Note that the specific heat decreases
monotonically with increasing p for all temperatures
T & J/ka. ) Thus a more careful discussion of the low-

energy excitations and of the two regimes observed in
the uniform susceptibility is necessary. In contrast to the
classical limit it is not possible to introduce a well defined
large correlation length $(T) for the quantum system.
Disorder in the quantum spin chain leads rather to an
ensemble of FM and AF segments. Therefore, starting
from high temperature, first correlation emerges among
the spins within each segment separately. In a second
step at lower temperature the segments begin to correlate
among each other. This may be illustrated most easily for
a nearly FM chain with a few isolated AF bonds. Each
AF bond tends to lock its two adjacent spins into a singlet
dimer and thereby decouple the long FM segments from
each other. Therefore, as the spins align in each FM piece
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FIG. 3. Specific heat of the quantum spin chain for p = 0
(solid), 0.25 (dotted), 0.5 (long dashed), 0.75 (short dashed),
and 1 (dash-dotted) obtained from two-point Pade approxima-
tion. The filled circles denote the results by Blote for the uni-
form chains [6] and the empty circles the data of our transfer
matrix calculation.

they act as one large spin. In this regime now the AF
bonds act as barriers for the spin wave modes within each
FM segment. As a consequence the contribution of these
modes to the very low-energy spectrum is small, as we
show in the following argument.

Assuming that the barriers are completely nontranspar-
ent the spin wave modes in each segment of length 8 have
a discrete spectrum cu„(E) = (2n n/4) w2ith n = 1,2, 3, ...
(cu in units of Js). For very small e = 1 —p the proba-
bility to find a ferromagnetic segment of length 4 is
P(Z) = e exp( —eZ). The corresponding density of states
can be calculated using the optimal fluctuation scheme

Qc 4—1

p(cu) = dZ P(8) QB (u—) —cu„(Z))
1

0

e
—m g/~co

(7)4' sinh(n e/~co )

with ~ (( 1. This density of states is exponentially sup-

pressed with a pseudogap b, —Js(2m e)2. Additionally, in

this picture the ground state is highly degenerate. While
the suppression of the low-energy spin wave modes can
account for the reduction in density of states [p(cu)—
cu '] seen in our series expansion, the large degeneracy
of the ground state contains the missing entropy, which
can be estimated

AS/ks — d8 2'(4)
ln(8)

1

»y)—e d4 = e(ln U 2 e) (8)
i

for a 0. However, since the AF bonds create only finite

potential barriers, the ground state degeneracy is lifted,
and a band of excitation modes of the large spins appears.
Consequently, we find a large density of states for
very low lying excitations originating from intersegment
correlations. These excitations should lead to a second

(LT) peak structure in the specific heat at an energy scale
lower than that due to the intrasegment excitations seen in
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Fig. 3. Hence the missing entropy is absorbed in this peak
which cannot be resolved within our calculation scheme.
Note that our high-temperature expansion includes only
correlations up to 11 lattice spacings while the properties
of intersegment correlations exist on longer length scales.
We can give a rough upper boundary for the position To

of the LT peak by the argument that the correlation length
of the spins has to exceed the average segment length 8
to form a large spin, i.e., g(T) —(J/ksT)' —4 = 1/e,
which leads to kgTO ~ Je —A. For random chains of
arbitrary p the approximate degeneracy of the ground
state originates also from the existence of a larger FM
piece separated by AF segments. As large FM segments
are seldom for decreasing p the missing entropy in the
HT peak shrinks. The intrasegment excitations for both
the FM and AF segments are localized due to the fact
that there is in general an energy-momentum mismatch
for the modes impeding their transfer from one segment
to the other (FM AF). These excitations contribute
little to the very low-energy spectrum as argued above
for the nearly FM system. Therefore still the picture
of the two different energy scales of the intrasegment
and intersegment correlations should hold, leading to
two peak structures in specific heat. Because of the
formation of the large spins the susceptibility shows
three regimes. Besides the HT regime with the standard
Curie behavior, the large spins of the FM segments
yield a new 1/T dependence of the susceptibility in an
intermediate temperature regime (Tc ( T ( J/ks). In
contrast to the classical spin system the susceptibility
needs not be proportional to 1/T down to T = 0, but
can even approach a finite value when the large spins
eventually correlate among each other.

Our discussion suggests that the thermodynamic prop-
erties of the random quantum spin chain are determined
by two energy scales visible in two peak structures of the
specific heat. The LT 1/T behavior of the susceptibil-

ity of the classical systems probably appears only as an

intermediate regime in the quantum spin chain. Our argu-
mentation leads to the conclusion that the features found
for the random ~J-bond quantum spin chain are typical
for a wider class of spin systems with discrete bond disor-
der. Therefore it may apply to some of the systems men-

tioned in the introduction so that our picture can be tested
experimentally.
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