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Fluctuations and Intrinsic Pinning in Layered Superconductors
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A Aux liquid can condense into a smectic crystal in a pure layered superconductor with the magnetic
field oriented nearly parallel to the layers. If the smectic order is commensurate with the layering,
this crystal is stable to point disorder. By tilting and adjusting the magnitude of the applied field,
both incommensurate and tilted smectic and crystalline phases are found. We discuss transport near
the second order smectic freezing transition and show that permeation modes lead to a small nonzero
resistivity and large but finite tilt modulus in the smectic crystal.

PACS numbers: 74.60.6e, 74.40.+k

In the past few years, both experimental [1,2] and
theoretical [3,4] work has emphasized the importance
of pinning in type-II superconductors. Although much
of this work has focused on random defects, e.g., twin
boundaries, the layered structure of the copper-oxide
material itself provides a nonrandom source of pinning
[5]. At low temperatures, since the c-axis coherence
length g,u

= 4 A. ~ s = 12 A., the lattice constant in this
direction, vortex lines oriented in the a-b plane are
attracted to the regions of low electron density between
the Cu02 layers. In this Letter, we discuss the phase
diagram of intrinsically pinned vortices in near perfect
alignment with the layers. In contrast to previous work,
we focus on the behavior relatively close to T„where
transport measurements are most easily performed and
hysteretic effects are weak. Our research is motivated

by the recent experimental work of Kwok et al. [6], who
observed a continuous resistive transition in YBa2Cu307
for fields very closely aligned (8 & 1 ) to the a bplane. -

To understand thermal fluctuations, we employ the bo-
son mapping [7]. Consider an isolated flux line ori-
ented along the a bplane. For-T ~ 80 K, $, = P,p(1—
T/T, ) 't2 ~ s, and the intrinsic pinning barrier energy
per unit length is [8]
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where the energy scale ep = (@u/4~A, b), with $0 the
flux quantum, A,b the a bplane penetra-tion depth, and
where y

—= Qm, /m, b is the anisotropy. With coordinates

y [[ 8 J c, z )( c, the free energy of the vortex [described
by x(y) and z(y)] is
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where the stiffness constants obtained from anisotropic
Ginzburg-Landau (GL) theory are e~i

= eo/y and e~ =
coy (see, e.g., Ref. [9]). Upon integrating the x displace-
ment, the remainder of Eq. (2) maps to the Euclidean ac-
tion of a quantum particle in a one-dimensional periodic
potential. In the quantum-mechanical analogy, the par-

ticle tunnels between adjacent minima of the pinning po-
tential, leading to the well-known completely delocalized
Bloch wave functions even for arbitrarily strong pinning.
The "time" required for this tunneling maps to the dis-
tance Lk;„k in the y direction between kinks in which the
vortex jumps across one Cu02 layer. The %KB approxi-
mation gives

Qeq U„stka T—s e (3)

where k&T plays the role of A. When the sample is larger
than Lk;„kalong the field axis the flux line will wander as
a function of y, with

([z(y) —z(0)]'& —Dy (4)

where the "diffusion constant" D = s2/Lk;„k.
For Qe&U~ s ~ kttT, the pinning is extremely weak,

and the WKB approximation is no longer valid. Instead,
the diffusion constant D = kttT/e~, as obtained from
Eq. (2) with U„=0. At much lower temperatures, when

g,. « s, the energy in Eq. (1) must be replaced by the cost
of creating a "pancake" vortex [10] between the CuO,
planes. In this regime, Lk;„k—g,b(s/g, )"'t 'r.

For T = 90 K, as in the experiments of Kwok et al.
[6], g, /s = 2.3, and Eq. (1) gives Qei U„s/kttT « 1,
indicative of weak pinning and highly entangled vor-
tices in the liquid state. The transverse wandering in
this anisotropic liquid is described by a boson "wave
function" with support over an elliptical region of area

kttTL»/Qe(~[ei with aspect ratio bx/Az = y = 5 for
YBa2Cu307 (L» = 1 mm is the sample dimension along

y) [11].
To explain the observed transition, the interplay be-

tween intervortex interactions [5] and thermal fluctuations
must be taken into account in an essential way. The
experiments of Ref. [6] rule out conventional freezing,
which is first order in all known three-dimensional cases.
A vortex/Bose glass (VG/BG) transition also appears un-

tenable, due to the purity of the sample (only six twin

planes are present, and resistance measurements are con-
sistent with first order melting for 8 ) 1'). The dynami-
cal scaling exponents are also inconsistent with VG/BG
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values. Instead, we postulate freezing into an intermedi-
ate "smectic" phase between the flux liquid (high tempera-
ture) and crystal/glass (low temperature). Such smectic
freezing, as first discussed by de Gennes for the nematic-
smectic-A transition [12], can occur via a continuous
transition in three dimensions. Changes in the applied
magnetic field tune the commensurability of the vortex
system with the underlying periodic structure [13).

Our analysis leads to the phase diagram shown in

Fig. 1. Upon lowering the temperature for H, = 0 and
a commensurate value of Hb, the vortex liquid (L) freezes
first at T, into the pinned smectic (S) state, followed by a
second freezing transition at lower temperatures into the
true vortex crystal (X). When H, + 0, tilted smectic (TS)
and crystal (TX) phases also exist. The TS-L and TX-TL
transitions are XY-like, while the TS-S and TX-X phase
boundaries are commensurate-incommensurate transitions
(CITs) [13]. At larger tilts, the TX-TS and TS-L lines
merge into a single first order melting line. As Hb is
changed, incommensurate smectic (IS) and crystal (IX)
phases appear, again separated by CITs from the pinned
phases and an XY transition between the IS and L states.
Note that the conuaensurate smectic order along the c
axis is stable to point disorder because phonon excitations
are massive (see below). This stability should increase
the range of smectic behavior relative to the (unstable)
crystalline phases when strong point disorder is present.

We now proceed with the derivation of these results;
further details will be given in Ref. [11].The a, b, and c
crystallographic axes are parametrized by the coordinates
x, y, and z, respectively. The Cu02 layers are thus
perpendicular to the z = c axis. The magnetic field is
primarily along the y = b direction. When H, = 0 and

Hb is tuned to commensuration, de Gennes' freezing
theory applies near T, . Smectic order appears as a density

FIG. l. Phase diagram for the pure vortex system as a
function of temperature T and c axis field H, . The fuzzy lines
indicate first order transitions. A similar phase diagram holds
in the BHb-T plane with the TX and TS phases replaced by IX
and IS states, respectively. The merging of the IX-IS and IS-L
lines need not occur in this case.

wave,

n(r) = noRe(1 + 4(r)e'~'], (5)

where no is the background density and q = 2m. /a is the

wave vector of the smectic layering (with wavelength

a). The complex translational order parameter 4(r) is
assumed to vary slowly in space. The superconductor is
invariant under translations and inversions in x and y and

has a discrete translational symmetry under z z + s,
where s is the Cu02 double-layer spacing. From Eq. (5),
these periodic translations correspond to the phase shifts
C —C e'". In the commensurate limit, a = ms, with

m an arbitrary integer. The most general free energy
consistent with these symmetries is

F= dr — —)A4 + —4 + —4"

— —(4 +4 )+ I
2

(6)

where the coordinates have been rescaled to obtain
an isotropic gradient term. The "vector potential" A

represents changes in the applied field BH = BHby +
H, z, with A„=0, A~ = qH, /Hb, and A, qBHb/Hb. The
form of this coupling follows from the transformation
properties of 4 [11,12]. Additional interactions with long
wavelength fluctuations in the density and tangent fields

[14] are irrelevant to the critical behavior [11].
When BH = A = 0, Eq. (6) is the free energy of an

XY model with an m-fold symmetry breaking term. A
second order freezing transition occurs within Landau
theory when v ) 0 and r ~ T —T, changes sign from
positive (in the liquid) to negative (in the smectic). The
renormalization group (RG) scaling dimension A of the
symmetry breaking term is known experimentally in three
dimensions as A = 3 —0.515m —0.152m(m —1) [15].
For m ) m, = 3.41, the field g is irrelevant (A ( 0),
and the transition is in the XY universality class. The
magnetic fields used by Kwok et al. [6] correspond
to m = 9—11 [16], well into this regime. The static
critical behavior is characterized by the correlation length
exponent v = 0.671 +. 0.005 and anomalous dimension

g = 0.040 ~ 0.003 [17].
Deep in the ordered phase (r ( 0), amplitude fluctua-

tions of 4 are frozen out. Writing 4 = Q)r)/v e
Eq. (6) becomes, up to an additive constant,

F, „„,= d r —(V.u —W) —g cos2m u/s, (7)3 .t
2

where a = 4n. (r(K/a2v, g = g((r)/v) ~, and the re-
duced vector potential is A. = A/q. The displacement
field u describes the deviations of the smectic layers from
their uniform state. The sine-Gordon term is an effec-
tive periodic potential acting on these layers. As is well
known from the study of the roughening transition [18],
such a perturbation is always relevant in three dimensions.
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The smectic state is thus pinned at long distances (i.e., the
displacements u are localized in a single minima of the
cosine) [19].

At lower temperatures, provided point disorder is negli-
gible, the vortices will order along the x axis as well [20].
This is once again a freezing transition at a single wave
vector and is described by a Landau theory like Eq. (6)
(with g = 0 since the modulating effect of the underlying
crystal lattice is much weaker in the x direction), with XY
critical behavior.

Next, we consider the effects of BH 4 0. When
the fields are small, A. is an irrelevant operator in
the smectic phase (as can be easily seen by replacing the
periodic potential by a "mass" term ~ u2). This implies
that the smectic layers do not tilt under weak applied
fields, i.e., B(B~u)/BH, (H, 0==0. The full susceptibility
c44' =— &(B,)/BH, ~H, =D is obtained from the expression

B, = Im(~Ii*8, 4) + (c44' —r"(4( )2H, , (8)
Hb

where c440 is the tilt modulus obtained from anisotropic
GL theory (without accounting for the discreteness of
the layers) and r" =— B~r/BH, ~H =0 Equatio. n (8) has a
simple physical interpretation. The first term is the con-
tribution to B, from tilting of the layers (described by
a phase rotation of i'). Transverse field penetration at
fixed layer orientation contributes via the second term.
Such motion arises microscopically from a nonzero equi-
librium concentration of vortices with large kinks extend-

ing between neighboring smectic layers. Equation (8)
predicts a nondivergent singularity c44(T) —c44(T,)—
~T —T, ~' at the critical point, where u is the spe-
cific heat exponent. At low temperatures in the smec-
tic phase this crosses over to the much larger value

c44 = [(e~/U~)'t ksT/Blooms] exp(Eik/ksT), where the

energy of a large kink is Eik = pe& U~ ms.
As is well known from the study of the sine-Gordon

model [13],a larger incommensurability can be compen-
sated for by energetically favorable "solitons, " or walls

across which u ~ u + s. Solitons begin to proliferate
when their field energy per unit area o.r, g K&s ex-
ceeds their cost at zero field, era —Q~g s [estimated from

Eq. (7)].
Physically, these solitons correspond to extra and/or

missing flux line layers and walls of aligned "jogs" for
BH along the b and c axes, respectively. In the former
case, this leads to an incommensurate smectic (IS) phase,
whose periodicity is no longer a simple multiple of s.
For BH )~ i, the solitons induce an additional periodicity
along the y axis. This tilted smectic (TS) phase has

long range translational order in two directions [21].
The analogous tilted crystal (TX) phase is qualitatively
similar, but has long range order in three directions.

Unlike the corresponding CIT in two-dimensional ad-

sorbed monolayers [13], we find that energetic interac-
tions between widely separated solitons dominate over

entropic contributions [11]. The free energy density in
the incommensurate phases is thus

where o. =—o.q,~q + o.o & 0 is the total areal free energy
of the soliton; 5 and ~ set the energy and length scales
of the soliton interactions. Minimizing Eq. (9) gives a
soliton separation i —w In(b, /(cr () near the CIT.

As the temperature is increased within the IS or TS
phases, the system melts into the liquid. The IS-L and
TS-L transitions are described by Eq. (6) with g = 0 and

are thus XY-like.
The shape of the CIT phase boundary is of particular

experimental interest. In the mean field regime, this
is obtained from the condition o. = 0 as BH —)r~v,
with YMF = (m —2)/4. By the usual Ginzburg criterion,
mean field theory breaks down for (r( ~ (ksTv/K i ) .
To determine the shape of the phase boundary in this
critical regime, we follow the RG flows until ~r~ is
order 1. Then BHR —g "BH and gR —g" g, with f-
~r~ ". Rotational invariance at the rescaled fixed point

(g = 0) implies that the field exponent is exactly AH =
1 [11]. Using these renormalized quantities, we find

Y«„=()A ~
+ 2) t /2 = 4.9—7.2 for the fields used in

Ref. [6]. The IS-L and TX-L phase boundaries are
nonsingular and are determined locally by the smooth BH
dependence of r.

We next discuss transport measurements using a
coarse-grained approach similar to flux line hydrodynam-
ics [14]. The time evolution of the fluxon density n(r, t)
is determined by the continuity equation

Btn+ Vg j„=0, (10)

f = —Jay+ g.
C

(12)

Here J is the applied transport current density and rt(r)
is a random thermal noise. Upon projecting the critical
smectic density modes near ~qi out of Eq. (10), we find

[22]

—ipJ 4 —g,

where p, = qpono/c and i1(k) = inoqg, (qi + k). Re-

markably, Eq. (13) has the same form as the model E
dynamics [23] for the complex "superfluid" order param-

eter 4, where now J, plays the role of the "electric field"

where V~ = (8„,8,), and j„is the vortex current, deter-
mined by the constitutive equation [14]

6F 6F 6F
1 j = —nVg + nay —7' Vg + nf,

Bn

where v. is the coarse-grained tangent density, I is related
to the Bardeen-Stephen friction coefficient gas = nol,
and the driving force is

2620



VOLUME 73, NUMBER 19 PH YS ICAL REVIEW LETTERS 7 NovEMBER 1994

in the Josephson coupling. The actual electric field is
L„=j„,Pp/c, leading via Eq. (11) to

' lm(@*~ @) + (I —I@I'/2)
~

I p. .j.,
2qc k 0,2 i

(14)
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where p„„is the normal state resistivity in the x direc-
tion, whose appearance in the last term follows from the
relation (npPp/c) /yas = (B/H, 2)p„„„.Equation (14) is
interpreted in close analogy with Eq. (8). The first term is
the contribution to vortex Aow from translation of the lay-
ers, while motion of equilibrium vortex kinks yields the
second term. Such How at "constant structure" is analo-
gous to the permeation mode in smectic liquid crystals
[12].

The presence of this defective motion implies a small
but nonzero resistivity at the L-S transition. Near T„
Eq. (14) predicts a singular decrease of the form p„„(T)—
p,„(T,) —~T, —T(' . At lower temperatures (but still
within the S phase) transport occurs via two chan-
nels. The permeation mode gives an exponentially small
linear resistivity p„„—exp( —Elk/kaT) (above T„sin-
gle layer kinks give p„„—exp( El, /kaT)—, with Ek =
E~k/m). Nonlinear transport occurs via thermally acti-
vated liberation of vortex droplets, inside which u (or
u, in the crystal plane) is shifted by s. Balancing the
soliton energy on the boundary with the Lorentz en-

ergy in the interior gives 8„I—e ~ / ~, where J, —
(c/8) (Kg)3I4(s/kaT)'lz. A more detailed discussion of
the full scaling form of Z(J) will be given in Ref. [11].

In the TS phase, net vortex motion along the c axis
occurs by sliding soliton walls along the b direction.
The resulting electric field is proportional to J and the
soliton density, leading to an additional contribution to
the resistivity which vanishes at the CIT like p„","""—
pp''""/In(h/~o ~). The situation in the IS phase is more
complex, due to the possibility of a roughening transition
for a single soliton wall and will be deferred to Ref. [11].

Lastly, we consider the effects of weak point disorder,
which enters the free energy as a random field Fd =
f d r npVd(r)Re(4(r)e'~'j, where Vd(r) is a quenched
random white noise potential. Such a perturbation alters
the universality classes of the phase transitions in Fig. 1,
and renders all but the L and S phases glassy [11]. The
stability of the S phase to randomness [which takes the
form Fd = fd r2npg~r[/v Vd(r)c s2on. (u + z)/ inathis
regime] is a consequence of the phonon "mass" g/s2. The
nature of the glassy phases and altered critical behavior
will be discussed in Ref. [11].
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