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Coherent Propagation of Two Interacting Particles in a Random Potential
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It is shown that in a random potential two repulsing or attracting particles can propagate coherently
on a distance l, much larger than one-particle localization length l~. The enhancement factor l, /l, for
coherent localization length is proportional to ll. The connection of this problem with the superimposed
band random matrices is established, and the theory developed is tested in numerical simulations with
random potential models and models of quantum chaos.
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The phenomenon of Anderson localization of one par-
ticle in a random potential was studied extensively dur-

ing the last years [1] and is now well understood. The
theoretical predictions were confirmed not only in labo-
ratory experiments but also in multiple numerical simu-
lations which became possible due to modern computers
and new numerical methods [2]. Recently, more and more
interest is attracted to interacting particles in a random po-
tential (see, e.g., [3—5]). The research in this direction is
stimulated by experiment with mesoscopic metallic rings
in which anomalously large persistent currents had been
observed [6). The magnitude of the current still does not
find a definite theoretical explanation [7] that determines
the necessity of a deeper understanding of the effects of
particles interaction in a random potential.

In this Letter I address a simpler problem of only two
interacting particles (TIP) in a random potential. I think
that this problem itself contains important physical effects
which will allow one to understand the properties of the
interacting particles problem at finite particles density. As
will be seen, the TIP problem can be reduced to some
kind of band random matrix (BKM). During the last few
years ensembles of such matrices were extensively studied
both numerically [8] and analytically [9]. However, BRM
arising from the TIP problem is of another type; namely,
it can be presented as a superposition of two BRM. The
properties of such superimposed BRM (SBRM) can
be effectively studied by the transfer matrix technique
[2] which allows one to determine the dependence of
the localization length in SBRIvl and TIP models on
parameters. This gives a striking result according to
which there are states of a new type in which the particles
are located a distance of one-particle localization length
I& from each other and propagate together coherently on a
much larger distance I, && ll. Such coherent propagation
takes place even in the case of repulsive interaction.
The physical reason for the appearance of such effective
pairing for repulsing particles can be understood in the
following way. In the random potential two repulsing
particles, which were originally close to one another,
cannot diverge on a distance much larger than ll due to
exponential decrease of transition matrix elements for a

distance between particles R && ll. In some sense the
localization forces the particles to stay together. In such
a coupled state the particles can move one with respect to
the other and this can strongly increase the distance I, in
which they propagate together, if compared to 1&.

To understand how the TIP problem can be reduced to
SBRM let us consider two particles in the 1D Anderson
model [2] interacting only on one site:

(E., + E., + U~...,)]0.,;, + V(|i., +i., + A. ,-i.,
+ Wn~n2+1 +, t/tn~n2 1) , —Et/In~, n2 ~ (1)

Here E„are one-particle energies randomly distributed
in the interval —W, W, and U characterizes the repul-
sive (U & 0) or attractive (U ( 0) interaction between
particles. We will consider the symmetric configura-
tions. The physics of the asymmetric case for an inter-
action on a nearby site is qualitatively the same [10].
Without interaction the eigenstates are simply given by
the symmetrized product of one-particle eigenstates P
The transformation between the unperturbed lattice basis
~n) and P can be written as (n) = g R„P, where
the index m marks the one-particle energies e . Be-
cause of the one-particle localization the matrix R can be
approximately represented as R„=exp( —~n —m

~ /
l~ —ie„)/~l~, where H„are random phases. For l~ )
1 and E = 0 one has l~ = 25(V/W)z [2].

It is convenient to rewrite (1) in a one-particle eigen-
basis:

(&m~ + em2)Xm~, m2 + U g Qm~, m2, mI, m~XmI, mz
I I

ml, m2 = EX, , . (2)
where g, , are eigenfunctions of the TIP problem
in one-particle basis P . The matrix of transi-
tions produced by the interaction is Q .
g„R„+,R„+,R„,R„,. Its structure is determined by
the properties of the matrix R. Since R is exponentially
small for

~
n —m ( ~ l~ the values of Q are not negligible

only for [m; —m, [ ( 1&. In this case R = 1/~l&, the
(I)

sum over n contains ll terms with random phases, and

Q = 1/l~ . Otherwise the value of Q is exponentially
3/2

small, and no transitions due to interaction can take
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place. .The similar estimates for the transitions had been
obtained for the problem of destruction of localization by
nonlinear interaction [11].

The properties of the matrix Q established above mean
that on the 2D lattice (mi, m2) the transitions couple only
the states near the diagonal md = mi = m2. In some
sense around the diagonal we have a strip of width
Am = I], and only in this strip are the states coupled by
interaction. Outside the strip the coupling is exponentially
small and can be neglected. In the strip each state is
coupled with roughly l& states by a matrix element U, =
U/li . We can order all levels in the strip, counting them

3/2

along the serpentine line going along the diagonal. The
index of such ordered sites j is connected with the index
along the diagonal md by relation md —j/l&, where md

gives the position of the pair on the 1D lattice. After
such snake ordering we obtain a band matrix G which
contains 2b + 1 diagonals with b = I&. Its nonzero
matrix elements are random and are of the order of U, .
However, this BRM is different from the usually studied
situation [8,9], since G is the sum of BRM and a diagonal
matrix, the elements of which are e, + e, . These
elements vary in the interval ~A, with 5, = 2(2V + W).
Dividing all the elements of G by factor U/~l& we
come to the following SBRM G„. It is given by the
sum of BRM and diagonal matrix with random elements
homogeneously distributed in the interval ~W& where
Wb = ~lih, /U. The BRM has 2b + 1 diagonals, and
its nonzero elements are homogeneously distributed in the
interval ~1/$2b + l.

The reduction of the TIP problem to SBRM G„
allows one to find the localization length l, for coherent
propagation in random potential. Indeed, to find I, it is
sufficient to know the dependence of localization length
I,b in SBRM on parameters of the system and then to use
the relation l, = l,b/li. The localization length l, b can be
found numerically by the transfer matrix technique [2,12].
This method allows one to determine the minimal positive
Lyapunov exponent in the strip. The inverse value of the
exponent gives the localization length. Such a numerical
approach is very effective since it allows one to determine
the localization length on a lattice with a length of a few
10 sites. The results of the numerical simulations are
presented in Fig. 1 for the parameters in the following
intervals: 3 ~ 2b + 1 ~ 321, 0 ~ W~ 4096, 1 ~ jt,~ ~
2 x 104, E = 0. The result clearly demonstrates that the
ratio l,b/b is a function of only one parameter which
is approximately a = (1.25Wb + 1)/(b + 0.5). For the
whole range l,b ) 1 the dependence on parameters is
quite satisfactorily described by

l,b
= 1.6(b + 0.5)/in[1 + 2.5(1.25Wb + 1)/b]. (3)

This expression also works approximately for nonzero
energies if i F i & Wb. Probably such fitting is not
optimal, and one can find a better functional shape.
However, the function (3) gives the correct asymptotical

l
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FIG. 1. Dependence of /, g in SBRM model on 0'~ and b
(about 90 points are shown). Full 1ine is fit (3).

behavior for Wb « ~b and Wb )) ~b. The first case is
the most interesting one, since it corresponds to the TIP
problem. Indeed, we consider the case with 8' ~ V and
U —V so that for large li the value Wb —~lt && ~b =
li. In this regime l,b = b /2Wb. The dependence 1/Wb
seems to be quite natural since in perturbation theory the
probability of transition is proportional to 1/Wb.

The expression found for l,~ gives the coherent local-
ization length l, = l,b/11..

I„- U'-—I) (4)
Ii 32V2

As we see for large li, the length of coherent propagation
is strongly enhanced. This signifies the appearance of
effective pairing even in the case of repulsion. Let us,
however, mention that even if large, l, is nevertheless
always finite so that eventually eigenfunctions decay
exponentially both for attracting and repulsive interaction.
It is interesting to note that the enhancement factor for
the localization length is proportional to U~li which can
be regarded as the enhanced one-particle interaction. A
similar statistical enhancement for weak interaction and

parity nonconservation was intensively studied in neutron-
nucleus reactions [13].

The estimate for l, can also be obtained on the basis of
the analogy with photonic localization in molecular qua-
sicontinuum [12]. Indeed, there the localization length
measured in units which are given by the size of transition
(photon frequency) is l~ —I p, where I' is the transition
rate in units of time and p is the density of states. For TIP
p is determined by the number of unperturbed compo-
nents p —l, /V, and the rate is I' —U2p. Here, the size
of transition in the basis of unperturbed eigenstates is l~ so
that l~ = l, /li —U2p2 in agreement with (4). The simi-
lar estimate for SBRM G„gives as in (3) l,b/b —b/Wb
since p —b/Wb, effective U, —b ' and I" —1/Wb.

Let us now discuss the conditions of applicability of
(4). At first, the enhancement factor should be large
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I,/li » 1 which corresponds to the condition Wb &( ~b
in SBRM. Second, U should be less or comparable with

V, since for U » V interaction can significantly modify
the spectrum. Also (4) was derived for the lattice (1) with

intersite distance a = 1, energy E —V » W, and particle
wave vector kF —1. Separate investigations are required
for continuous limit with a/li &( kFa &( 1 [14].

The result (4) was obtained for the one-channel lattice.
However, the same reduction to the SBRM model can
also be done for a thick wire with M transverse channels

(M & I&). In this case the enhancement of localization
length along the wire will be I, /lt —Mli(U/V)2/32
times. Since the localization length in the infinite wire
is proportional to the diffusion rate and conductance, it
is possible to assume that in the metallic regime with
the size of the sample L ( li, the enhancement of the
one-electron conductance is proportional to the factor
M/32, which would give the correct order of magnitude.
However, formally the case L ~ l& cannot be analyzed by
the above method of reduction to the SBRM problem, and
therefore it should be studied separately in more detail.

Up to now the result (4) was derived by the reduction
of the initial TIP problem to the SBRM model. Being
physically correct this reduction nevertheless contains
few assumptions (e.g., complete statistical independence
of the elements in SBRM), and therefore the direct
verification of the theoretical prediction (4) is of principal
importance. Since, according to (4), the enhancement
starts to work only from lt —30 (U & V), it is quite
difficult to make direct matrix diagonalization of the
initial problem (1). Therefore, I investigated the wave
packet dynamics on the lattice (1). To simplify the
numerical difficulties the random potential E„was taken
symmetric with respect to the point n = 0. Initially
both particles were located at n = 0 with fixed total
energy E = 0.2. The dynamics was characterized by
the two second moments of probability distribution over
unperturbed levels o.+ = ((in' I + ln2I) )/4 and tr- =
((inii —in2i)2). In the case of coherent propagation
tr+ should be larger than o. . The dependence of the
moments on time is presented in Fig. 2. The localization
length l, is enhanced approximately 2.5 times with respect
to the noninteracting case that is in satisfactory agreement
with the estimate (4).

The existence of coherent propagation was also
checked for another standard model of quantum chaos,
namely for the kicked rotator [12]. This model describes
two particles on a ring perturbed by kicks periodic in
time. The evolution of P function is given by the unitary
operator

S =exp{—i[T(n, + n2)/2 + UB„, „,]}
X exp[ —ik(cos Ht + cos 82)], (5)

with ni 2 = i 8/88i 2
—For U = 0. the classical dynamics

is chaotic and diffusive if kT ) 1. Quantum interference
leads to suppression of this diffusion and dynamical
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FIG. 2. Time dependence of second moments in (1) with
W = 0.7, V = I: upper (a+) and middle (o. ) curves are for
U = I; lower curve (o+) is for U = 0. At r = 0 both particles
are at n = 0, basis is —501 ~ n ~ 501.

localization with the length li = k2/2 for k ) 1 [12].
For U 4 0 the situation is analogous to (1) but there
are two important differences. First, this is a dynamical
model without external randomness. Second, many states
(2k » 1) are coupled by one-particle perturbation. Also,
interparticle interaction is neither attractive nor repulsive.
The results in Fig. 3 for o. show obvious enhancement of
coherent propagation which can be estimated as I,/lt =
Qo.+(U = 2)/o. i(U = 0) = 5 = lt/4.

Another study of the enhancement was done for a bag
model of two particles in the 1D random potential with
interaction being zero if the distance between particles
b n & B and infinity if 3 n ) B (B is the bag size). The
wave function is zero at the bag edges, and transfer
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0 5x10 10 1 5x10

FIG. 3. Same as in Fig. 2 for model (5) with k = 5.7, kT =
5: upper (cr ) and middle (o. ) curves are for U = 2; lower
curve (cr ) is for U = 0. At t = 0 both particles are at n = 0,
basis is —301 ( n ~ 301, t is given in number of kicks.

2609



VOLUME 73, NUMBER 19 P H Y S ICAL RE VIE%' LETTER S 7 NovEMBER 1994

that a similar situation can take place for quasiparticles at
high density p, l& && l.

It is my pleasure to thank Oleg Sushkov who attracted

my interest to the discussed problem. The discussions
of the properties of one-particle basis in TIP and nuclei
during his stay in Toulouse were very valuable for me.
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FIG. 4. Dependence of l, on i, in the bag model (points),
E = 0. Dashed line shows l, = ll, full line shows slope 2
corresponding to l, —l~ with l~ = 25V'/W2.

matrix technique is very efficient for calculation of the
maximal localization length. The simulations were done
for the symmetric configuration of particles in the bag
of size B = 323 ~ l~. The dependence of the coherent
localization length l, in this model on the one-particle
localization length li is shown in Fig. 4. For disorder
W ~ 1.5V the length l, is close to li, while for the smaller
values of W the length l, starts to grow approximately as
li in agreement with (4). The introduction of interaction
between particles does not lead to a significant change of
l, . As a result of the bag model it is possible to give
another qualitative explanation of the enhancement. The
coupled pair feels only the potential averaged over the
size of the pair l~. Such averaging decreases the disorder
to W,ff = W/~1~, giving a new effective lattice with the
distance between sites li in which the localization length

lc/li (U/Weft) ll U /V
For a finite particles density p, such that

l i « 1/p, « l, there are two interesting possi-
bilities. In one case particles on the lattice are distributed

by pairs of size li, pairs collide and destroy coherent
localization leading to appearence of finite nonzero
conductivity in the infinite quasi-one-dimensional system.
In another case particles are distributed one by one,
the distance between them is much larger li, and then

conductivity should be exponentially small. It is possible
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