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The theory of the 2kF and 4kF instabilities in quarter-filled band organic conductors is revisited. The
phase angles of the 2kF bond and charge density waves change as electron correlation is turned on, and
this switching of the phase angle is critical for understanding the bond distortion patterns in the real
materials. Intersite Coulomb interactions in the real materials must be nonzero but less than a critical
value. Both intersite and intrasite charge density waves are destabilized in the quasi-two-dimensional
regime for realistic parameters, explaining the weakening of these phases in the superconducting
materials.

PACS numbers: 71.28.+d, 71.30.+h, 71.45.Lr

Conducting organic charge-transfer solids are of inter-
est as highly doped Mott-Hubbard semiconductors. Nearly
forty of these materials are superconducting, and evidence
exists for strong Coulomb interactions among the fermi-
ons in these systems [1]. For a complete understanding
of their normal state, it is essential that the spatial bro-
ken symmetries in the quasi-one-dimensional (quasi-1D)
nonsuperconducting conductors be understood. In addi-
tion to the usual 2kF Peierls instability, many of the organic
conductors exhibit a 4kF instability (kF is the one-electron
Fermi wave vector) [2]. Despite considerable theoretical
work, important issues involving distortions in the real ma-
terials and the parameter space in which the materials lie
remain largely unresolved. This is primarily due to the
limitations of calculations of susceptibilities [3—5] that do
not measure actual distortion patterns or charge densities.
We give here a detailed picture of the transitions in the ac-
tual experimental quasi-1D systems, that also has signifi-
cant implications for the quasi-2D superconductors, where
these transitions are absent or weakened.

We limit ourselves to p = 0.5, where p is the num-
ber of electrons per site. For this commensurate case,
the bond order wave (BOW), with periodic modulation
of the intersite distances, and the charge density wave
(CDW), with modulation of the intrasite charge densi-
ties, are distinct. Each of these can have periodicities 2kF
(period 4) and 4kF (period 2). Furthermore, each period
4 density wave can occur in two forms, corresponding
to different phase angles. Table I shows the period 4
and period 2 patterns. For zero Coulomb interactions, the
ground state consists of coexisting 2kF BOW1 and CDW1
[6]. Table I also shows the observed bond distortion pat-
tern [7] below the 2kF transition in MEM(TCNQ) z, where
this pattern is precisely known. The bond distortion in
semiconducting TEA(TCNQ)z [8] is identical and is ac-
companied by a modulation of intramolecular charge that
resembles the 2kF CDW2 of Table I [8].

Existing theories [3—5,9—11] do not explain several of
the mysteries in the real materials. For example, the 4kF

phase has been interpreted as a CDW by various authors
[9—11]. This would (qualitatively) imply occupancy of
alternate sites by electrons (see Table I, row 2, column 3).
Since the 4kF and 2kF CDWs do not coexist [4], for the
2kF transition to occur on the same chain, the 2kF phase
must be a spin density wave (SDW) or a spin Peierls state.
We discount the possibility of the SDW, as long range
SDW is not possible in one dimension even at 0 K. The
spin Peierls state that can accompany the 4kF CDW is the
BOW1 state of Table I, in which the distances between
the "occupied" sites are alternating. The experimen-
tal bond tetramerized phase is, however, different from
B0%1,and therefore we conclude that the 4kF cannot be
a CDW to begin with. The 4kF phase can also be a BOW,
and indeed in this case peaks in the wave-vector depen-
dent charge-transfer susceptibility are found at both 2kF
and 4kF within the extended Hubbard model [4]. What
is still not clear is how the experimental bond distortion
pattern is obtained below the 2kF transition, as no com-
bination of the 4kF BOW and the 2kF BOW1 (which

TABLE I. The possible bond distortions and charge modu-
lations in a p = 0.5 chain. The single bonds correspond to
undistorted bonds, while the double and dotted bonds corre-
spond to short and long bonds, respectively. The last column
gives the bond distortion pattern in MEM(TCNQ)q below the
2kF transition. Here the double dotted bond is a long bond
which is shorter than the single dotted bond. In the case of the
CDWs, the lengths of the vertical bars on the sites correspond
to the charge densities.

B0% and CD% patterns in p=0.5

Period 4 Period 4 Period 2 MEM(T~q),

2kF B0%1 2kF BO%2 4kF BOW BO%
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dominates over the BOW2 for noninteracting electrons)
can give the observed distortion pattern. The nature of the
CDW that accompanies the 4kF BOW in these commen-
surability ~2 systems has not been investigated. Optical
absorption in MEM(TCNQ) 2 below the 4kF transition has
previously been explained within a dimer model [12,13]
which retains only two neighboring TCNQ molecules and
assumes that a single electron occupies the dimer. This
model assumes that the 4kF phase is a BOW, but the na-
ture of the CDW is ambiguous, as both the 4kF CDW and
the 2kF CDW2 would satisfy the condition of "one" elec-
tron per dimer.

We show here that a clearer picture of the instabilities
emerges if phonons are included explicitly in the calcula-
tions, and actual bond distortions and charge modulations
are calculated. Our most significant findings are the fol-
lowing: (i) The phase angles of the lowest energy period 4
structures change with nonzero Coulomb interaction. This
switching of the phase angles is central to the detailed un-

derstanding of the 4kF and the 2kF transitions. (ii) Exactly
as the 2kF BOW1 and 2kF CDW1 coexist for all electron—
molecular-vibration (e-mv) and electron —intersite-phonon
(e-ph) couplings [6], the 2kF BOW2 and the 2kF CDW2
also coexist. (iii) For the intersite Coulomb interaction
nonzero but less than a critical value, the ground state
has a 4kF BOW component in addition to the 2kF BOW2
and CD%2 components. The experimental lowest energy
bond distortion pattern now emerges naturally as a combi-
nation of the period 2 BOW and the period 4 BOW2.

The Hamiltonian we consider is

H = g[t —u(u;+( —u;)](c; c;+) + c;+, c; )

+ Ugn;tn;I + V gn;n;+~

BOWl and BOW2, respectively. The N =- 8 periodic
ring with 4 electrons distorts spontaneously for even small
A = n~/Kt, while the N = 12 with 6 electrons requires a
much larger A. This is a well known difference between
finite periodic 4n and 4n + 2 electron systems which
at U = 0 have degenerate and nondegenerate ground
states, respectively. The 2kF BOW is weakened by U
in both cases. However, the more significant result is the
crossover from 8 = 0 to 8 = 7r/4, as shown in Fig. 1(a),
corresponding to a transition from 2kF BOW1 to 2k~.

BOW2 for nonzero U. The crossing occurs at a much
larger U for N = 12 than for N = 8. This is expected,
as the larger A needed to induce the distortion in the N =
12 also increases the energy difference between BOW1
and the BOW2 at U = 0. The minimum A at which
the 4n + 2 electron periodic rings distort decreases with
increasing size [6], and therefore the critical U at which
the energy crossing occurs in the N = 12 is an upper
bound for the infinite chain at small A.

In addition to changing 6, Coulomb interactions also
add a 4kF component. We repeat our calculations with the
ansatz u, = uo[r2 cos(2kF j 02) + r4 cos(4kFj —84)],
r2 + r4 = 1. The absolute lowest energy within corre-
lated models occurs for Hq = n/4, 84 = 0, and r4 4 0.
Furthermore, r4 increases monotonically with U and for
fixed U increases rapidly with V, provided V is less
than a critical value V, (U). We discuss the issue of V,.

below. The effects of U and V on r4 are summarized
in Fig. 1(b). Note that the calculated bond distortion
pattern is identical to the experimentally observed dis-
tortion in MEM(TCNQ)z below the 2kF transition and
in TEA(TCNQ)2 for r4 & 0.41. The U at which r4

exceeds 0.41 is different for N = 8 and N = 12, but
this difference decreases rapidly with V [see Fig. 1(b)],
indicating once again that the difference between 4n
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Here c; creates an electron of spin cr at site i, n,

c; c;, n; = g n;, t is the one-electron hopping inte-

gral, and U and V are the on-site and nearest neighbor
Coulomb repulsions. The u; are the displacements of the
ith molecular units from their equilibrium positions, v;
correspond to an internal molecular mode, a and p are
the e-ph and e-mv coupling constants, and Ki and Kq are
the corresponding elastic constants.

Exact calculations were done for rings of 8, 12, and 16
sites, both with and without the restriction of fixed overall
ring size. We first show the results for fixed overall size.
We initially assume p = 0 and u, = uocos(2kFj —0).
The calculations are done for periodic N = 8 and 12,
with both 8 = 0 and 8 = n/4, correspondi. ng to the
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FIG. 1. (a) The gain in total energy vs U for 2kF bond
distortions for periodic N = 8 and 12. The calculations are for
A = 0.8 for 1V = 8 and 1.41 for 1V = 12 (see text). The solid
line in each case corresponds to the 80%1 and the dashed line
to the B0%2. The arrows indicate the crossing of the 80%1
and BOW2 energies. (b) The relative weight r4 of the 4kF
component of the ground state wave function as a function of
U and V. The dashed and solid curves correspond to N = 8
and 12, respectively. The values for k are the same as in (a).
For r& ) 0.41 the bond distortion pattern is identical to that
observed in MEM(TCNQ) below the 2kF transition.
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and 4n + 2 electron systems vanishes in the long chain
limit. We conclude that the crossover in 0 and nonzero
r4 ) 0.41 are both necessary to explain the experimental
bond distortion. Calculations of susceptibilities [3—5]
do not distinguish between BOW1 and BOW2 and also
cannot give the exact bond distortion pattern.

The issue of V, can be understood as follows. In the
limit of U ~ and P = 0, Eq. (1) reduces to the half-
filled band of spinless fermions with nearest neighbor
interaction V. Within the spinless fermion Hamiltonian,
transition to a 4kF CDW with equal bond lengths occurs
for V o V, = 2t and small A. For V & 2t a dimerized
BOW appears for infinitesimal A, with the bond dimeri-
zation increasing with V [14]. Numerical simulations
in the limit of A = 0 indicate that even for finite U,
a CDW appears only above a V, (U), which is now

slightly larger than 2t [15]. The increase of r4 with V

within Eq. (1) is then expected for V ( V, (U). Thus the
observed periodicity indicates that experimental materials
are in the V ~ V, regime.

The above results were confirmed by a second set of
calculations. Instead of using the size constraint and the
ansatz for u;, the ground state energy was minimized with
respect to a position dependent t; = t + u(u;+i —u;).
Using a complete basis of electron configurations and
an initial guess for the t;, we used the Lanczos method
to find the ground state. We evaluate BE/Bt;, adjust
the t; to decrease the energy (steepest descent), and re-
peat the process until the t; converge. These calcula-
tions were done for N = 8 and 16 with periodic boundary
conditions and N = 12 with antiperiodic boundary con-
dition. The antiperiodic boundary condition for N = 12
introduces the same Fermi level degeneracy in the ab-
sence of the distortion that characterizes periodic N = 8
and 16, allowing calculations with the same A in all
cases. We again find that for U = V = 0 the BOW1
is lower in energy, but for nonzero U the BOW2 is
favored.

As in the previous case, the absolute ground state is once
again found to be a composite of the 4kF BOW and the 2kF
BOW2. To display the distortion patterns we compute the
Fourier transform T(q) of the final hopping parameters t;
which minimize the energy. Period four distortions appear
as a peak in the Fourier transform at momentum 2kF, and
the difference between the BOW1 and the BOW2 patterns
is the phase of this Fourier component. Similarly the
period 2 component of the distortion appears at momentum
4kF. Crossover occurs from a dominant 2kF to a dominant
4kF when T(4kF) ) T(2kF). Our results are summarized
in Figs. 2(a) and 2(b), where the 2kF curves correspond
to the lower energy BOW2 phase. As in Fig. 1(b), here
also nonzero U enhances the 4kF contribution to the wave
function, but the 4kF dominates the 2kF only for nonzero
moderate V. Once the 4kF contribution dominates, the
overall bond distortion pattern is exactly the same as that
of MEM(TCNQ) 2 and TEA(TCNQ) 2.

0.10( 0.06 I l I I

(
~ I 1 I

f
~ I I

t=1, U B, a /Kt=0. 45

0.05

A
Ol

E

0.04

A
I

0.02

e-

5
(a) V

10
0.00

0
(b) v

FIG. 2. The 2kF (solid lines) and 4kF (dashed lines) compo-
nents of the hopping parameters t; at V = 0 and A = a'/K, =
0.45. (a) Results are shown for N = 8 (circles) and N = 16
(diamonds) with periodic boundary conditions (circles) and for
N = 12 with antiperiodic boundary conditions (squares). In all
cases we see that the 4kF component increases with U until
at very large U the distortion vanishes completely. Note that
U alone is insufficient to drive the 4kF component larger than
the 2kF component, which is the condition for the pattern to
change from "medium-short-medium-long" to "short-medium-
short-long. " (b) Same as (a) for fixed U = 8 and varying
V. Note that V enhances the 4kF component, which can now
be larger than the 2kF component. The results for L = 16 at
large V may be an artifact of the small system size. At the end
of this curve, at V = 6, the L = 16 distortion is purely 4kF, or
period two. However, the wave function at this point has a
period of four, changing sign under translation by two lattice
sites. For the undistorted lattice, this corresponds to a ground
state with nonzero momentum.

We also find that just as the BOW1 coexists with
CDW1 [6], the BOW2, and the composite ground state of
BOW2 and the 4kF BOW, coexist with the CDW2. The
CDW2 is confirmed by monitoring the actual site charge
densities.

All of the above results can be physically understood
within a real space approach to spatial broken symmetries
that has been used to understand the half-filled band in
one [16] and two [17] dimensions, as well as CDWs in
1D bands with arbitrary p [5]. In this approach, the be-
havior of density waves is understood from repeat units
in appropriate many-electron configurations in real space.
For example, the CDW in the half-filled band can be
understood by examining the configuration . . .2020. . . ,
~here the numbers denote site occupancies by electrons.
Since charge transfer from an atom to its left or right
are exactly equal in the above configuration, we can in-
fer that the CDW and the BOW do not coexist in p = 1.
Similarly, double occupancies are destroyed by U, and
therefore the Hubbard U should destroy the CDW. In

p = 0.5, the only possible repeat units are site occu-
pancies. . .2000. . . , . . . 1100.. ., and . . ~ 1010.. . . The last
configuration leads to the 4kF CDW and is not of interest
here. The 2kF BOW1 that occurs at U = 0 is understood
in terms of the repeat unit. . .2000 ~. . . Large charge trans-
fer between the "doubly occupied" site and the neighbor-
ing "empty sites" promotes two strong bonds, while weak
charge transfer between neighboring empty sites promotes
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two consecutive weak bonds. Similarly, we also expect a
large charge density on the "doubly occupied" site, an in-
termediate charge density on the neighboring empty site,
and an even weaker charge density on the next neighbor
empty site, i.e., 2kF CD%1. As U increases, the contri-
bution of. . . 2000. . . to the wave function decreases while
that of . . . 1100.. . increases (for small V). In high spin
eigenstates, the configuration ~ . . 1100.. . would promote
weak bonds between the two "occupied sites" and the two
"unoccupied sites" and strong bonds between an occu-
pied site and a neighboring unoccupied site. In low spin
eigenstates, there are two different types of weak bonds,
between singly occupied neighboring sites with opposite
spins and between unoccupied sites. The latter distortion
pattern agrees with that in the last column of Table I and
must coexist with 2kF CD%2. Thus the change in the

phase angles of the 2kF components of the BOW and the
CDW found numerically can be anticipated from physical
reasoning s.

The above results give a complete picture of the 2kF
and 4kF instabilities in the real materials. The free energy
of the experimental system is dominated by high spin
states at high temperatures, whose electronic behavior is
similar to that of spinless fermions. For V ( V, (U) the
lattice dimerizes to the 4kF BOW below the 4kF transition
temperature. At still lower temperatures, the free energy
is dominated by low spin states, and the behavior now
would resemble that of the ground state of Eq. (1).
Dimerization of the dimerized lattice now takes place,
and the overall bond distortion pattern resembles that in

the last column of Table I. Coexistence of these states
with the 2kF CDW2 also explains the observed charge
modulation pattern [8] in TEA(TCNQ)2. For nonzero P,
bond lengths within consecutive TCNQ molecules along
the stack axis will rellect the CDW2.

Although we have focused on the quasi-ID nonsuper-
conductors, our results have implications for the quasi-2D
superconducting TMTSF and the BEDT-TTF based ma-

terials. The tendency to the phase transitions discussed
here is considerably weakened in the superconductors [1].
In the quasi-2D regime, the 4kF CDW with alternate oc-
cupied sites is still possible. However, our demonstra-
tion that organic conductors have V ( V, would explain
the absence of this CDW transition. On the other hand,
the absence of the BOW is a 2D effect. The BOW tran-

sition here is analogous to the spin Peierls transition in

p = 1, which is weakened in 2D, and gives way to an-

tiferromagnetism [17]. The CDW2 is a consequence of
the BOWs and is thus also expected to vanish in 2D.
The only remaining possible transition is then to the 2kF
SDW, and it has been argued [18] that for p away from
1 the SDW first requires a minimal 2D hopping, but then

gradually weakens as the extent of two dimensionality in-

creases. This would be supported by the occurrence of

a spin Peierls transition in the quasi-1D TMTTF materi-
als, the occurrence of SD% in the weakly 2D TMTSF,
its vanishing under pressure, and the absence of both spin
Peierls and SDW transitions in the even more strongly
2D BEDT-TTF. Thus all possible spatial broken symme-
tries are considerably weakened in p = 0.5 in the quasi-
2D regime for V ~ V, . %hether or not superconductivity
is related to the suppression of spatial broken symmetries
is an intriguing question.

Some of these calculations were done on the iPSC/
860 and Paragon at the San Diego Supercomputer
Center. D. T. was supported by DOE Grant No.
DE-F602-85ER-40213.
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