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Ab Initio Molecular Dynamics with Excited Electrons
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A method to do ab initio molecular dynamics suitable for metallic and electronically hot systems is
described. It is based on a density functional which is costationary with the finite-temperature functional
of Mermin, with state being included with possibly fractional occupation numbers. Optimization with
respect to density only, rather than states and occupation numbers, is necessary. As an illustration, the
method is used to calculate structure ahd dynamics in dense hot hydrogen.

PACS numbers: 71.10.+x, 31.50.+w, 61.20.Ja, 65.50.+m

A few years ago Car and Parrinello (CP) [1] introduced
a method to perform ab initio molecular-dynamics simu-
lations based on density functional theory (DFT). In this
approach the ionic and electronic degrees of freedom are
treated on an equal footing through the introduction of
a Lagrangian in which the dynamical variables include
the electronic orbital coefficients. Such an approach has
proved to be useful and stable in the simulation of chemi-
cally complex materials. In spite of its great success, the
CP approach needs to be improved in many ways. First,
it cannot treat in a practical way fractionally and/or ther-
mally occupied states. Second, the integration for the CP
equations of motion requires a time step which is dictated
by the dynatnics of the fast electronic degrees of free-
dom and which turns out to be rather small, particularly
for small or even zero-gap systems such as metals. Simi-
lar problems are encountered when plane waves of high
momentum are needed to expand the orbitals. The use
of plane waves to expand the Kohn-Sham (KS) orbitals
imposes the use of periodic boundary conditions. This
makes the simulation of isolated and/or charged systems
cumbersome [2]. Finally, because of the orthonormaliza-
tion requirement of orbitals, the cost of a single iteration
in the CP and derived algorithms scales like N2M for large
systems, where M is the basis set size and N the number
of particles. In electronic optimization calculations this
has to be multiplied by the number of iterations needed
to achieve convergence, which depends on the nature and
size of the system.

Recently there have been attempts by several groups
to overcome these drawbacks. As a solution to the time
step problem, Pearson, Smargiassi, and Madden [3] have
shown that it can be substantially increased if the density,
and not the orbitals, is used as the dynamical variable.
This, however, they achieved at the expense of making
an approximation to the kinetic energy functional. As a
solution to the scaling problem, several authors [4] have

proposed algorithms which scale more favorably than N3,
but again this more favorable scaling is achieved only at
the expense of some approximations or assumptions.

Here we present an alternative formulation of density
functional-based molecular dynamics which extends to
interacting fermions the approach of Alavi and Frenkel
[5] and which has a number of attractive features. First, it
incorporates consistently the effects of thermal electronic
excitations and fractionally occupied states. Second, the
functional can be evaluated for any given electronic
density in a strictly NM procedure and does not involve
orthonormalization. Third, it can be implemented entirely
on a real space grid. Fourth, it enables us in principle
to do CP-like dynamics on the electronic density without
making any approximations to the kinetic energy. Fifth,
the efficiency in optimizing the functional is not greatly
reduced in the case of metallic systems. We show below
that this algorithm can be implemented in practice by
studying dynamics in dense hydrogen both in molecular
and metallic regimes.

We consider an energy functional which is the sum of
the (Helmholtz) free energy of an electron gas of density
n(r) and ion-ion Coulomb energy (Ett):

g=&+ IJN+Ett,

where 0 is the grand potential for an interacting spin-2
Fermi gas within DFT,

Q[n(r), Rt] = ——ln det 1 + e
2

drn(r)
~

+ "'
~
+ 0„,. (2)

( P(r) BA„,l
2 Bnr

0„, is the finite-temperature exchange-correlation grand
potential functional; P(r) is the Hartree potential; P =
1/knT, is the electronic temperature parameter; A is
the one-electron Hamiltonian A = —1/2V2 + V(r); and
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where n(') is the output electronic density,

n"(r) —= gf W,*(r)0;(r), (5)
I

where f; are the (thermal) Fermi-Dirac occupation num-
bers and i/I; the one-electron eigenstates of 9f evaluated
using n(r) Equ. ation (4), together with thermodynamic
relation (BQ/Bp)„~, ~

,= Nwhich im—plicitly defines p,
in terms of n(r), can be used to compute the functional
derivative of g with respect to n(r):

Bg
Bn(r)

dr' [n~'~(r') —n(r')]

(4)

~ ~r —r'[ Bn(r)Bn(r')) (6)

The stationary point of g occurs when n~'i = n, i.e., at
self-consistency. But this is precisely the same condition
required to minimize the Mermin functional, and therefore
the two functionals share the same stationary point.
However, unlike the latter functional, g can exhibit a
saddle point at stationarity if the kernel of the integral
(6) is not positive definite [8,9].

The evaluation of g can be done efficiently through
use of the Trotter approximation. The full density matrix
is expressed as a product of P high temperature matrices:
e P~ = (e P~~p)p, where P is a large integer, so that
e = p/P is small, and then the Trotter approximation is
applied: e 'i +

& = e 'vt e '~e 'vt + 8(e3). Since
the kinetic term is diagonal in reciprocal space and, for
local forms of V, the potential term is diagonal in real
space, the application of the propagator to a state could,
in principle, be implemented in the manner of CP, i.e.,
using fast Fourier transform techniques. However, here
we use the purely real space approach of Alavi and
Frenkel [5]. A suitable discretized approximation to this
high temperature propagator is the sparse matrix

1

6e (&~ )( '+ J), i, j nearest neighbors
Pij (7)0, otherwise .

The value of P is related to p and the mesh spacing
b and is given in reduced units by p/P = 8 /3. [This

V(r) is the effective density-dependent potential,

V(r) = g V,I(r —Ri) + dr', + . (3)
n(r') 80„,

r —r' Bnr
In the limit of zero temperature the first term of Eq. (2)
reduces to the band energy contribution and 0„, to the
ground-state exchange-correlation energy (E„,), such that
in this limit + becomes the Harris energy functional [6].
Like this latter functional, g is explicitly defined for any
density n(r), but is clearly its generalization to finite T.
Moreover, g shares the same stationary point as the
exact finite-temperature functional proposed by Mermin
[7]. This can be seen by noting the following property of
0:

mesh spacing also defines the energy cutoff (E,„,) in a
reciprocal plane-wave description. ] If required, periodic
boundaries can be easily supplemented. The eigenvalues

of p are related to the energy eigenvalues e; of
via e; = (P/—p) Inh; + 8(k4/P), where k is the

wave vector associated with e;. Diagonalization of p;,
is efficiently performed using the Lanczos algorithm [10].
The number of Lanczos iterations required to obtain the N
largest eigenvalues of the M X M matrix p (where M is
proportional to N with a large constant of proportionality)
was found to scale linearly with N, making the evaluation
of g an 8(NM) process to a good approximation.

The output density n(') is expressed in terms of the
eigenvectors of p (which are those of M apart from errors
introduced by the Trotter factorization), as in Eq. (5).
These eigenvectors are expressed in terms of the Lanczos
vectors U, as P; = P, ' a;, v, , where L, is the number of
Lanczos iterations required to converge the ith state. In a
generic application of the Lanczos method L; —N so that
the construction of n~'~ is in principle an 8 (N M) process.
However, because of the preconditioning explained below,
we found that for high-energy states (large i) L; —i,
whereas for the low-energy states (small i), L; can be held
essentially constant. This latter feature greatly reduces
(but does not altogether eliminate) the prefactor of the
asymptotic N3 tail. The basis for the preconditioning
is that, since A; = e &"/, the gaps between all states
e; & 0 are exponentially increased, whereas those between
e; & 0 are exponentially decreased. Consequently, the
rate of convergence of the Lanczos iteration, which is
strongly dependent on the spacing of the eigenvalues
[11],is extremely rapid for the low-lying states. Finally,
this convergence can be further enhanced by choosing
the starting vector of the iteration to be a weighted sum
over the states of the previous self-consistency iteration,
thereby ensuring substantial overlap with all desired states.
In numerical tests, the overall scaling for systems sizes
of up to 512 atoms was found to be 8(N ), implying
that the asymptotic limit has not been reached even for
such large systems. It is possible to accelerate further
the rate of convergence by considering the shifted matrix
p' = p + (1 —e Pl'tp)I, which has the property that all
states e; ( p have A; ) 1, while all e; & p, have A; ~ 1.
Consequently, any gap at p, will be amplified by raising p'
to some convenient power.

For dynamical simulations two approaches can be
adopted based either on optimization of the electronic
density at every time step or on a Lagrangian formulation
in which the density is dynamical. We concentrate here on
the former approach; the latter requires special treatment
owing to the saddle-point behavior of the functional and
will be published elsewhere. The Hellmann-Feynman
forces are easily obtained through differentiation of g
with respect to the ionic coordinates, with no further

computational effort. In addition, in contrast to the
original CP method, the dynamics in the pregent scheme
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is isothermal rather than adiabatic. In the isothermal
limit, transitions between electronically excited states are
allowed, but there is no phase coherence between these
states.

Calculations have been performed on hydrogen under
conditions of high temperature and pressure. This system
can exhibit metallic and/or molecular behavior. Calcu-
lations [12] exist for comparison. In addition, because
of the absence of core electrons, use of a local potential
suffices [13]. 0„, was treated within the local density
approximation (LDA). Finite-teinperature expressions for
Q„, are available in the literature [14], but for the den-
sities and temperatures of interest here, they are essen-
tially independent of T. We used, instead, the standard
zero-temperature results of Ceperley and Alder as param-
etrized by Perdew and Zunger [15]. At each time step,
the stationary point of g was found by self-consistent di-
agonalization using the Anderson mixing scheme [16] for
the density. The criterion for convergence in the forces
on the ions was set to gl ~FI(n) —Fl(n —1)i & 10 s for
the nth iteration, which gave rise to an energy conser-
vation in the integration of the equations of motion of
approximately 1 part in 5000, using the Verlet algorithm
and a time step of 20 a.u. (= 0.5 fs) (see Fig. 1). Typi-
cally approximately 10 iterations were needed to achieve
convergence. Simulations on the hydrogen dimer yielded
a bond length of 1.48 a.u. and a vibrational frequency of
4150 cm, in agreement with CP simulations.

Systems consisting of 64 hydrogen atoms placed in a
cubic box with periodic boundary conditions were studied
at a range of densities [r, = 1.3, 1.5, 1.7; r, = (3i4m. p)'~ ]
and temperatures 700 ( T & 10000 K. The calculations

were performed with a grid of size 24 (20 Ry) at r, = 1.3
and with 36, 40 (32 Ry) at r, = 1.5, 1.7. Three sets
of simulations were performed. One with T, = 300 K,
which is rather cold and corresponds essentially to a
adiabatic ground-state calculation, and two others with
"hot" electrons at T, = 10000 and 50000 K. Two-
temperature regimes such as the latter are encountered
in the initial stages of radiatively heated plasmas, where
thermal equilibration of ionic and electronic subsystems
takes place over relatively long periods of time [17].
We discuss here only a part of the results to illustrate
the method; full details will be published elsewhere.
The ionic configurations were initially prepared in a
randomized highly unstable diamond configuration and
equilibrated over runs of 0.2 ps, during which the ions
disordered. The initial data being discarded, the runs were
continued for an additional 0.2 ps, during which thermal
averages were computed.

The T, = 300 K calculations yielded results in excellent
agreement with the earlier simulations of Hohl et al. [12].
Pair-distribution functions are shown in Fig. 2. At r, =
1.3 the dimeric structure of the H2 molecule is almost
completely absent. At r, = 1.5, the pronounced first peak
at 1.5 a.u. indicates a tendency for dimerization, though
the unusually high minimum that follows implies that a
large fraction of the dimers are either highly stretched
or dissociated. The integrated number of ions up to
this minimum is 1.4. Inspection of atomic trajectories
reveals the presence of short-lived atomic species, whose
collisions with the dimers lead frequently to reactive
scattering. At r, = 1.7 the ions are clearly paired, the
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FIG. 1. Example of energy conservation during a microcanon-
ical run. (a) 0, (b) solid line: +, dotted line: g + K, where
E is the ionic kinetic energy. All energies are in atomic units.
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FIG. 2. Pair correlation functions with "cold" electrons (T =
1000 K).
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FIG. 3. Pair correlation functions with "hot" electrons (T =
700 K).

first peak of g(r) integrating to 1. Figure 3 shows pair
correlation functions for r, = 1.5 at T = 700 K for two
high electronic temperature runs. At T, = 10000 K, the
first broad peak narrows (and integrates to less than I),
while a small second peak appears at 2 a.u. , possibly
to indicate a larger number of longer-lived dissociated
species. At T, = 50000 K, the structure has dramatically
changed. Almost all molecules have dissociated, and the
first peak of the g(r) has vanished.

In summary, we have described a method to do ab initio
simulations at finite electronic temperatures in which
the ground state approximation can be recovered in the
suitable limit. The breakdown of the latter approximation
is shown in the case of the hydrogen plasma in a two-
temperature regime. The scaling properties and memory
requirements of this method are more favorable than other
presently available exact algorithms. Its extension to
nonlocal potentials, as well as a Lagrangian formulation,
is the subject of current studies.
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