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We study a monomer-dimer model with repulsive interactions between the same species in one
dimension. With infinitely strong interactions the model exhibits a continuous transition from a reactive
phase to an inactive phase with two equivalent absorbing states. Monte Carlo simulations show that
the critical behavior is different from the conventional directed percolation universality class but seems
to be consistent with that of the models with the mass conservation of modulo 2.

PACS numbers: 64.60.-i, 02.50.-r, 05.70.Ln, 82.65.Jv

A monomer-dimer model was introduced by Ziff, Gu-
lari, and Barshad to describe the oxidation of carbon
monoxide on a catalytic surface [1]. In this model, a
monomer (CO) adsorbs onto a single vacant site, while a
dimer (O,) adsorbs onto a pair of adjacent vacant sites and
then immediately dissociates. A nearest neighbor of adsor-
bates, composed of a dissociated O atoni and a CO atom,
reacts and forms a CO, molecule and desorbs from the
metal surface. In two dimensions, as the CO gas pressure
is lowered, the system undergoes a first-order transition
from a CO-saturated inactive phase into a reactive steady
state and then a continuous transition into an O,-saturated
inactive phase. This continuous transition is shown to be
in the same universality class as the directed percolation
(DP) and the Reggeon field theory (RFT).

Motivated by the monomer-dimer model, many related
lattice models have been formed to study nonequilibrium
phase transitions. One of the simplest models is the
monomer-monomer model [2,3] in which particles of two
different species can adsorb on a single vacant site. If
two adsorbates of different species are nearest neighbors
to each other, they react and form a product which desorbs
immediately from the surface. The system exhibits a first-
order transition from a phase saturated with one species to
another. Allowing desorptions of one species leads to a
continuous transition which belongs to the DP universality
class [4,5].

In both the monomer-monomer and the monomer-
dimer models, interactions between adsorbing particles
are ignored except for the actual surface reaction which
converts the reactants into the products. Recently, an in-
teracting monomer-monomer model [6,7] has been intro-
duced where particles of the same species have variable
repulsive interactions. When the interaction strength is
weak, the interaction model exhibits only a first-order
phase transition between two saturated phases. At the
critical value of the interaction strength, a first-order
line terminates at a tricritical point beyond which two
continuous-transition lines appear. The two saturated
phases are separated from a reactive steady state by these
two lines. These two continuous transitions are shown to
be in the DP universality class again.
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A common feature of these models is that they exhibit
a phase transition from a reactive phase into an inactive
phase of a single absorbing state. The resulting critical
behaviors are classified into the category of the so-
called “DP conjecture” [8—10] which depicts that models
exhibiting a continuous transition to a single absorbing
state generally belong to the universality class of the
directed percolation.

The universality class for models with a single absorb-
ing state is well established. But few studies have been
made for models with more than one absorbing states.
Very recently Jensen and Dickman [11,12] have exten-
sively studied some nonequilibrium lattice models with
infinitely many absorbing states, the pair contact process
(PCP), and the reaction dimer (RD) model. Both mod-
els have a continuous transition from a reactive phase into
an inactive phase with infinitely many absorbing states,
which is shown, rather surprisingly, again in the DP uni-
versality class.

In contrast to the well-established DP universality class,
only a few models have appeared in literature which
are known to be in a different universality class from
DP. Grassberger, Krause, and von der Twer [13,14]
studied two models of probabilistic cellular automata
(PCA), namely models A and B. Both models exhibit
a continuous transition from an active phase into an
absorbing phase, in which the system is trapped in one
of two (translationally) symmetric states with particles
and vacancies placed in the alternating sites. But these
models behave differently in the absorbing phase. Once
the system enters into one of the two absorbing states,
it remains in that state forever in model A but oscillates
from one state to the other in model B. In spite of
the discriminating behavior in the absorbing phase, both
models are shown to be in the same universality class but
different from DP. The order-parameter exponent 8 was
obtained by static Monte Carlo simulations 8 = 0.6 *
0.2 [13], but later by dynamic Monte Carlo simulations
B =093 = 0.12 utilizing the hyperscaling relation [14].
The DP value of B is 0.2769(2) in one dimension.
The evolution rules for both models in common involve
the processes X — 3X and 2X — 0 that the number
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of particles is conserved modulo 2. Grassberger has
addressed in [14] that this conservation law might be
responsible for the non-DP behavior.

Another model which conserves the number of par-
ticles by modulo 2 can be found in branching annihi-
lating random walks with an even number of offsprings
(BAW). Even though the BAW has a single absorbing
state, static Monte Carlo simulations [15] show clearly
non-DP behavior with 8 = 0.7 £ 0.1 in one dimension.
This value seems to be consistent with that of the PCA,
even though heavy numerical errors obscure the fact. The
critical behavior of BAW with an odd number of off-
springs is compatible with DP [16].

All previous works [11-15] seem to imply as a whole
that more important in determining the universality class
of nonequilibrium phase transitions is not the number
of absorbing states but the mass conservation law in
dynamics. This shows a sharp contrast to the case of
equilibrium phase transitions where the number of ground
states is relevant to the universality class. The symmetry
between absorbing states may be more important than the
number of absorbing states in determining the universality
class. In the PCP, the infinitely many absorbing states are
not equivalent probabilistically. Some absorbing states
can be reached more easily than other absorbing states
by the PCP dynamics. Therefore, it is important to study
a model with multiple equivalent absorbing states. The
PCA models have two equivalent absorbing states but
also another conserving quantity, the mass conservation
of modulo 2, which is claimed to be responsible for the
non-DP behavior. In this Letter, we address a question
of whether a model with multiple equivalent absorbing
states may have non-DP behavior without any mass
conservation law. As one of the simplest such models, we
introduce a monomer-dimer model with infinitely strong
repulsive interactions between the same species [17].

The interacting monomer-dimer model (IMD) is a
generalization of the simple monomer-dimer model, in
which particles of the same species have nearest-neighbor
repulsive interactions. This is parametrized by specifying
that a monomer (A) can adsorb at a nearest-neighbor site
of an already adsorbed monomer (restricted vacancy) at
a rate rpky with 0 =< ry < 1, where k4 is an adsorption
rate of a monomer at a free vacant site with no adjacent
monomer-occupied sites. Similarly, a dimer (B,) can
adsorb at a pair of restricted vacancies (B in nearest-
neighbor sites) at a rate rgkg with 0 = rz = 1, where
kp is an adsorption rate of a dimer at a pair of free
vacancies. There are no nearest-neighbor restrictions
in adsorbing particles of different species. The case
ra = rg = 1 corresponds to the ordinary noninteracting
monomer-dimer model which exhibits a first-order phase
transition between two saturated phases in one dimension.
In the other limiting case r4 = rz = 0, there exists no
fully saturated phase of monomers or dimers. However,
this does not mean that this model has no absorbing states.
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In fact, there are two equivalent absorbing states in this
model. These states comprise only the monomers at the
odd- or even-numbered lattice sites. A dimer needs a pair
of adjacent vacancies to adsorb, so a state with alternating
sites occupied by monomers can be identified with an
absorbing state.

In this Letter, we consider the IMD with r4, = rp =
0 only for simplicity. General phase diagram of the
IMD will appear elsewhere [18]. Then the system can
be characterized by one parameter p = ks/(ksa + kp) of
the monomer adsorption-attempt probability. The dimer
adsorption-attempt probability is given by g =1 — p.
The order parameter of the system is the concentration of
dimers p in the steady state, which vanishes algebraically
as p approaches the critical probability p. from below:

where B is the order-parameter exponent. There is a
characteristic length scale ¢ and time scale 7 which
diverge at criticality as

&~ lpc = pl™". (2)

T~ |pc — pI™", 3)

where v, (v)) is a correlation length exponent in the
space (time) direction. It is quite difficult to measure
the order parameter accurately near criticality by static
Monte Carlo simulations due to the critical slowing
down. Moreover, there are strong finite-size effects near
criticality because of the diverging correlation length.
In this Letter, we utilize the finite-size scaling (FSS)
idea developed for nonequilibrium phase transitions by
Aukrust, Browne, and Webman [19].

Various ensemble-averaged quantities depend on sys-
tem size through the ratio of the system size and correla-
tion length L/¢. Thus, we can take the concentration of
dimers near criticality as the following form:

p(p,L) ~ L™ P/ f[(p. — p)L'*+], “4)

such that at p,

p(pe,L) ~ LA/ S)

and

as x — ©. (6)

flx) ~ xP

In the supercritical region (p < p.), the concentration p
remains finite in the limit L — oo, but it should vanish
exponentially in the subcritical region (p > p.).
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For the time dependence of the order parameter at
criticality, one may assume a scaling form

p(L,t) ~ L™B/vrg(Lt7s/m), (7

so that for a short time (or L — ) p has a power-law
dependence on ¢ as

P~ t B/ 8)

The characteristic time 7 for a finite system is defined
as the elapsing time for a finite system to enter into the
(quasi)steady state. An elementary FSS analysis finds 7
at p.

7(pe, L) ~ L""+, )

We run static Monte Carlo simulations. The initial con-
figuration is far from absorbing states with all sites va-
cated, and we use periodic boundary conditions. Then the
system evolves along the dynamical rules of our model.
After one adsorption attempt on the average per lattice
site (one Monte Carlo step), the time is incremented by
one unit. The system reaches a quasisteady state first and
stays for a reasonably long time before finally entering
into an absorbing state. We measure the concentration
of dimers in the quasisteady state and average over some
independent samples which have not yet entered the ab-
sorbing states. The number of independent samples varies
from 50 000 for system size L = 32 to 300 for L = 2048.
The number of time steps ranges from 500 to 2 X 10° and,
at least, 200 samples survive until the end of simulations.

At p., we expect the ratio of the concentrations of
dimers for two successive system sizes p(L/2)/p(L) =
2A/». | ignoring corrections to scaling. This ratio con-
verges to unity for p < p. and diverges to infinity for
P > p. in the limit L — «. We plot the logarithm of this
ratio divided by log,,2 as a function of p for L = 64,
128, 256, 512, 1024, and 2048 in Fig. 1. This plot shows
strong corrections to scaling. The crossing points be-
tween lines for two successive sizes move to the right
as the system size grows. In the limit L — o, we esti-
mate the crossing points converge to the point at p. =
0.5815(5) and B/v, = 0.48(2). The critical probability
p. can be more accurately estimated from dynamic Monte
Carlo simulations [20]. The value of the exponent ra-
tio B/v, is clearly different from the standard DP value
of 0.2524(5) which is combined with v, = 1.0972(6) and
B = 0.2769(2).

In Fig. 2, we have plotted pLA/*: against x = (1 —
p/pc)LY?+ in a double-logarithmic plot. From Egs. (4)
and (6), it follows that for small x the curve converges to a
constant value, while for large x it should follow a straight
line with slope B. We find that the data for the various
system sizes are best collapsed to a curve with choices
pc = 0.5815(5), v, = 1.83(3), and B/v, = 0.48(2), from
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FIG. 1. Plots of log[p(L/2)/p(L)]/log2 versus p.
Open squares are for L = 64, solid squares are for
= 128, open circles are for L = 256, closed cir-

cles are for L = 512, open triangles are for L = 1024,
and closed triangles are for L = 2048.

which we get B = 0.88(3). The straight line in Fig. 2 is
a line with slope 0.88, which is in excellent accord with
asymptotic behavior of x in Eq. (6).

By analyzing the decay characteristic of dimer concen-
trations p(¢,L), we can determine the value of another
correlation exponent ». First the finite-size behavior of
the characteristic time 7 is investigated. At p = p, =
0.5815, we measure 7 for the various system sizes. The
double-logarithmic plot (see Fig. 3) for the characteris-
tic time 7 versus the system size L shows a straight line
from which we obtain the value v /v, = 1.734(3). This
gives the value of v = 3.17(5), combined with the value
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FIG. 2. The double-logarithmic plot for the data of pLA/*+
against x = (1 — p/p.)L'/** for the various system size L =
64-1024. With p, = 0.5815, v, = 1.83,and B/v, = 0.48, the
data are collapsed to a curve. The solid line is of slope 0.88
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FIG. 3. The characteristic time against the system size L in a

double-logarithmic plots for the various system size L = 32—
1024. The solid line is of slope 1.734 (= v /v,).

v, = 1.83(3). We also can check the value of v indepen-
dently by measuring the decay exponent of p at p = p,.
From the double-logarithmic plot for p(¢) versus the time
t in Fig. 4, we estimate 8/v) = 0.276(2), which is in ex-
cellent agreement with the above results. We summarize
our results for the critical exponents as

B = 0.88(3), v, = 1.83(3), vy = 3.17(5).

In summary, we have numerically studied the interacting
monomer-dimer model with infinitely strong repulsive
nearest-neighbor interactions between the same species in
one dimension. In contrast to the interactionless model
exhibiting a discontinuous transition, this system exhibits a
continuous transition from a reactive phase into an inactive
phase with two equivalent absorbing states. This model

log(p)

log(t)

FIG. 4. The time dependence of the concentration of dimers
at p. = 0.5815. The slope of the curve gives the value of
B/v; = 0.276(2).
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does not involve the dynamical processes with the mass
conservation of modulo 2. Nevertheless, the values of the
critical exponents are clearly different from the DP values
and seem to be consistent with the values of the PCA and
the BAW, in which the mass conservation of modulo 2
governs the dynamics. Therefore, we conclude that the
symmetry between absorbing states as well as the mass
conservation law are equally important in determining
the universality class for nonequilibrium phase transitions.
It is not yet clear why the model with two equivalent
absorbing states and the one with the mass conservation
of modulo 2 seem to be in the same universality class.
Dynamical exponents and hyperscaling relations of the
IMD will be discussed elsewhere [18].
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