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Heat-Diffusion Central Peak in the Elastic Susceptibility of KSCN
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(Received 27 April 1994)

We present the first low frequency (0.1 —20 Hz) measurements of the complex elastic constant on
KSCN single crystals. Our measurements show very slow sample-size dependent elastic relaxations,
at temperatures ranging from T, —40 K up to the order-disorder phase transition temperature T, . The
data can be well explained with the assumption of temperature or equivalent entropy fluctuations. This
phenomenon, although intimately related to the thermal-diffusion central peak phenomenon is, to our
knowledge, for the first time seen in a macroscopic elastic susceptibility.

PACS numbers: 64.60.Cn, 05.70.Ln, 44.30.+v, 62.20.Dc

Potassium thiocyanate (KSCN) is a model crystal for
studying order-disorder phase transitions [1]. A first
order phase transition at T, = 415 K leads the crystal
from a disordered tetragonal (D4t, ) high temperature phase
to an ordered antiferrodistortive orthorhombic (Dzt', ) low
temperature phase [2]. Distinct precursor effects preface
this phase transition in both phases. From neutron
scattering it was found that in the low temperature phase
the precursor clusters appear already 40 K below T, [3].
They consist of small dynamic domains which are in
an antiphase relation with the long range ordered matrix
of the crystal [3]. The average cluster size g = 20 A
depends weakly on temperature and their lifetime r„&
10-11 s. At T, the long rage order pm~eter ~ vmishes,
but short range order persists up to the melting point,
i.e., T, + 30 K [3]. NMR measurements have shown
that these short range ordered clusters consist of dynamic
orthorhombic microdomains with a lifetime 10 3 & r+ &
10 z s [4]. According to diffuse neutron scattering the
correlation length g+ = 35 A at T, + 2 K and decreases
with increasing temperature [3].

To obtain additional insight into the dynamics of the
phase transition we performed detailed low frequency

(f = 0.1—20 Hz) three-point bending measurements of
the complex elastic constant in KSCN. We found
a very distinct, probe geometry dependent relaxational
process at very low frequencies. For example, for a
sample with thickness h = 0.6 mm the relaxation time is
r,h

= 10 ' s. By varying the thickness h of the sample
the relation Tth = (s'zD) 'h is obtained yielding D =
2.8 X 10 3 cmz s '. Since this value of D is typical for
the thermal diffusivity constants of similar crystals we
attribute the observed low frequency dispersion of the
elastic susceptibility to a crossover from the isothermal
limit (car, h « 1) to the adiabatic limit (car,h » 1) which
occurs because of the effect of temperature (entropy)
fluctuations. This effect is closely related to the heat-
diffusion "central peak" phenomenon, a subject which
was intensively studied in the 1970s by neutron scattering
[5] and light scattering [6—9) experiments.

In 1977, Lines and Glass [10)predicted the existence of
an ultralow-frequency dispersion due to entropy fluctua-

tions in a macroscopic quantity (dielectric permittivity).
Sixteen years later Chaves et al. [11]claimed to have ob-
served this phenomenon in the dielectric permittivities of
KDP and TGS below their ferroelectric phase transitions.
However, they could not verify the q dependence of the
relaxation time r,h(q) = (Dq ) ', which is characteristic
for a heat-diffusion central peak phenomenon.

The KSCN crystals were grown in vessels closed
against the open air at 30'C [12]. They were cut with a
diamond saw to obtain rectangular bars with h = 0.6 mm

(x direction), t = 2 mm (y direction), and 1 = 7 mm (z
direction). The corresponding lattice constants are a =
6.691, b = 6.676, and c = 7.606 A at room temperature.

The temperature dependences of the real and imaginary
parts of the elastic response to a time dependent stress
were measured using a commercial dynamical mechanical
analyzer (DMA7, Perkin Elmer) in the frequency range
between 0.1 and 20 Hz. With this apparatus one can
measure the static and dynamic strain in response to a
static or dynamic stress with a resolution of about 3 and
20 nm, respectively. To get a strain amplitude of 1 pm
at the rather low force of 100 mN we used the three-point
bending mode (Fig. 1). In this mode the bending force
results in a stress profile, which in lowest approximation
can be written as o.3(x) ~ cos(qx), where the magnitude of
the wave vector q is determined by the size of the sample,
i.e., q = m. /h [13]. The resulting complex elastic constant
C3~3~(q, QP) = C33 (q, ta) + tC33 (q, ta) = S33 (q, ca).

Figure 2 shows as an example the temperature depen-
dences of C33' and C3'3" measured at 0.2, 2, and at 107 Hz

h- Sample
thickness

FIG. 1. Three-point bending geometry.
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FIG. 2. Measured temperature dependences of the real (C3'3")
and the imaginary (C3'3") part of the complex elastic con-
stant for frequencies of 0.2 and 2 Hz. (V) adiabatic and ('~)
isothermal elastic constants are obtained from the frequency
scans at various temperatures (Fig. 3). The measurements
at 107 Hz (~ ) were previously performed with ultrasonic
technique [14].
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(ultrasonic measurement [14]). In addition, the adiabatic
and isothermal values extrapolated from frequency scans
(Fig. 3) performed at various temperatures are shown.
At low frequencies C33 exhibits a large negative anom-

aly at T, The ma. gnitude of the jump decreases with
increasing measurement frequency and is reduced by a
factor of about 2 for the adiabatic elastic constant. At
ultrasonic frequencies (10 Hz) the negative dip vanished
completely [14].

Simultaneously with the onset of the dip in C33',
the imaginary part C33 of the complex elastic con-
stant increases with increasing temperature, displaying a
maximum at T, . With further heating C33 falls to zero
slightly above T, . For h = 0.6 mm the strongest damp-

ing is observed around 1 Hz. To get further informa-
tion on the dynamics we performed frequency scans for
C33 and C3'3 at various temperatures (Fig. 3). The
curves are characteristic for a relaxational process with
a rather long, slightly temperature dependent relaxation
time rl = 0.1 s. The connection between the 20 Hz re-
gion and the 10 MHz region requires a second relaxa-
tional process with 10 ( r2 ( 10 s.

In the following we will analyze the data in the frame
of a thermal diffusion central peak model [7]. The details
of the calculations will be published elsewhere [15].
The theory is based on the following Landau-Ginzburg
expansion of the free energy density [1]

F = Fp + —(T —Tp)g + —i1 + —
71
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FIG. 3. Measured frequency dependences of C33 and C33 at
different temperatures below T, (—) fit using Eq. (6). Inset:
Temperature dependence of 7.,h.

where i1 is the primary order parameter describing the ori-
entational ordering of the SCN molecules with the criti-
cal wave vector Q, = a'/2 [16]. e3 is the longitudinal
strain in Voight notation and C33 is the corresponding bare
elastic constant. o.3 denotes the stress in g direction.

In the presence of 712m coupling in (1) the elastic
anomaly can be written (neglecting three- and four-point
correlations of order parameter Auctuations) as [17]

C33(q, pI) = C33 gp(Qc)Xg(q Q ) ( )
where 71p(Q, ) is the equilibrium order Parameter. In the
presence of a central peak mechanism the order parameter
susceptibility X„hasthe following form [7]:
X„'(q—Q„~)= X„"(q —Q, , o)

X [1 —i cu 7 „(q—Q, )j- 82i PI/y
1 —l op

(3)
The first part in (3) is the so-called Landau-

Khalatnikov term which is obtained from a relaxational
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behavior of the order parameter fluctuations, i.e.,
Bti(q, t) = Bri(q, 0)e ' "~ . The order parameter relaxa-
tion time in (3) is given by

central peak phenomena of various origins. For a heat-
diffusion central peak 1/y in (3) is the thermal diffusion
time [6,7]

rIb(q) = (Dq')

where g is the correlation length of the order parameter
fluctuations. The last term in (3) quite generally describes

where D is the thermal diffusivity constant. 82 =
A2 re T/

C„,where C„is the specific heat at constant g. Inserting
(3) into (2) one obtains

C33(q, aI) = C3o3—
~'no(Q. )x,(q —Q„o)

~'i~~I| (q)X, (q —Q. , o)
1 —ice r„q

—Q, +
1 —iarrIb q

(6)

Equation (6) describes two relaxational processes of
a Debye form which are due to fluctuations in the or-
derparatneter Bg(q —Q„t)= Btl(q —Q„O)e ' "'t &1

and the temperature BT(q, t) = BT(q, 0)e 'i""1~1. Since in
our measurement geometry (Fig. 1) q is determined by
the thickness of the sample, i.e., q = m. /h = 50 cm ' «
Q, = m/a = 10s cm ', the order parameter relaxation
time r„[Eq.(4)] cannot depend on q. In contrast the ther-
mal relaxation time should strongly depend on the size of
the sample, i.e., rIt, (q) = (Dq2) ' = h2/Dm. 2. Frequency
scans with probes of various thicknesses (Fig. 4) yield
the quadratic dependence of 7.

& on the sample thickness
(Fig. 5). In addition the diffusivity constant determined
from this fit is in good agreement with the values for
thermal diffusivity constants of molecular crystals. This
proves, that the low frequency elastic relaxation which we
are probing is due to temperature fluctuations along the
x direction of our sample, i.e., rt = rIb(q). As a conse-
quence the second dispersion observed between the 20 Hz
and the 10 MHz region (Fig. 2) is due to the order parame-
ter fluctuations [Eq. (6)], i.e., 72 = r„(Q,) « rIt, (q). Us-
ing Eqs. (3) and (5) one obtains that the thermal diffusion
central peak phenomenon leads to a difference between
isothermal and adiabatic elastic response. The isothermal
limit corIb « 1 yields gr ' = g„'""(Q„O),the inverse

isothermal susceptibility, whereas for cur, z » 1, cov „«
1 one obtains the adiabatic limit gs = g„'""(Q„O)+
82. Since rIt, depends strongly on the q vector sampled

by the experimental technique, the crossover from isother-
mal to adiabatic behavior occurs at different frequencies
depending on the experimental method. For a typical
light scattering experiment the momentum transfer

q = 105 cm ' resulting in rtb(q) = 10 7 s for D =
10 3 cm2s ' [9]. In our case the extremely small wave
vector q = 50 cm ' which is given by the thickness
h of the sample yields rIs(q) = 0.12 s at T = 413 K
for It = 0.06 cm. Thus for f « 1 Hz the isothermal
elastic constant is measured (~ in Fig. 2) yielding the
full elastic anomaly at T, [Eq. (6)]. From Fig. 3 it is
evident, that the adiabatic elastic constant is measured
at frequencies higher than 10 Hz. The large difference
between low frequency (20 Hz, V in Fig. 2) and higher
frequency (10 MHz, ~ in Fig. 2) elastic constants is
due to a crossover from co7„«1 to cur„»1 region
[Eq. (6)], yielding the order parameter relaxation time
10 ' ( ~„-& 10-' s.

In summary, very slow (1 Hz) elastic relaxations have
been found in KSCN below the order-disorder phase
transition by low frequency elastic measurements. This
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FIG. 4. Frequency dependences of C33 for various sample
thicknesses h measured at T = 413 K. H H = 0.2 mm, Q
h =038mm, &h =05mm, and~h =06mm.

FIG. 5. Thermal diffusion time r,h as a function of the
thickness h of the sample, as obtained from the fits of the data
of Fig. 4 using Eq. (6). Limits of error are 3o values.
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ultralow frequency dispersion is not caused by order pa-
rameter fluctuations. To explain our low frequency (0.1—
20 Hz) data another relaxation mechanism is required,
which we have shown to originate from entropy fluctua-
tions. The physics of this effect is essentially equal to the
thermal-diffusion central peak phenomenon observed, e.g. ,

by light scattering in KDP [9]:Because of the r12T cou-
pling in the free energy (1) the order parameter fluctua-
tions lead to a term rio(Q, )Brl(Q, —q)BT(q) creating a
spectrum of temperature fluctuations BT(q) which propa-
gate with characteristic diffusion times r,h(q). In a given
experiment a particular q component of the temperature
fluctuations BT(q) is probed. In a scattering experiment
q(= 10s cm ') for light scattering is the wave vector trans-
fer to the crystal, whereas in our three-point bending ex-
periment q(= 50 cm ') is determined by the size h of the
sample. This enabled us to verify the sample geometry de-
pendent dispersion r,h(q = m. /h) ~ h'/D, h, which is char-
acteristic for a heat-diffusion central peak mechanism.

To our knowledge this is the first example for the
observation of a thermal diffusion central peak in a
macroscopic elastic susceptibility.
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