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A very efficient modified configuration interaction method is introduced for accurate atomic and
molecular calculations with basis sets that are substantially smaller than those used by conventional
configuration interaction (CI). The energy of the ground state of helium, for example, is obtained
with a relative error of 3 X 10 a with a total of only 393 basis functions (no extrapolations). This is
accomplished by means of (i) a radial representation that converges as N„where N„ is the number
of two-electron radial functions and (ii) Nt generalized two-electron angular functions with which the

energy converges as N , . (The-standard functions of conventional CI converge as N„29 and Nt '.)
PACS numbers: 31.20.Tz, 31.10.+z

The configuration interaction (CI) method provides a
straightforward way to perform atomic physics calcula-
tions involving correlation effects between electrons. The
actual wave function for the system under consideration
is expanded in terms of a set of symmetrized (antisym-
metrized) variational basis vectors each with a radial part
that depends on the radial coordinates r; and an angular
part given by the coupling of spherical harmonics Yl,. (r;)
to a total angular momentum L, where r; are the coordi-
nates of each electron. One starts the CI expansion with
a set of basis functions in which the (single) angular part
is the one giving the most important angular contribution;
for example, for an atom with two electrons in an nS state,
the initial configuration would couple two s electrons. To
this set one then adds basis vectors with different one-
electron angular momentum quantum numbers l;. A typi-
cal CI basis set using Slater-type radial functions in the
two-electron case is given by

s later a; rt —p, rt
l I, l2; I.M

where

At, , t,, Lttt(rl, rz) = g (ll;mtl2;m2ILM)I't„m, (rt)I'l„~, (r2)
ml m2

(2)

and tz; and P; are arbitrary nonlinear parameters.
One looks then for convergence as one increases

(i) the number of powers of r; and (ii) the number of
spherical configurations Al, l,L~. The convergence with
l is poor [1—3], specially in the case of small nuclear
charge Z as correlation effects scale as 1/Z (e.g., the
energy of the ground state of helium converges as I 3).
The CI approach is, on the other hand, attractive because
it is a simple method, simpler, for example, than the
correlated basis set approach, mainly due to the fact that
only two-dimensional radial integrals are involved in the
calculations as against the three-dimensional integrations
(over rl, rz, and rl2) necessary in the case of correlated
calculations. Because of its inherent simplicity and the
fact that it can fully describe correlation effects, the CI

method is widely used for many-electron atomic and
molecular systems; therefore, a substantial improvement
in its speed of convergence will be of great significance.

In what follows we will use two-electron systems as
a test case to introduce this new method. This allows
for simplicity in the formation without loss of generality
given that the extension to systems with more electrons is
straightforward. In particular, we shall present numerical
results for the case of the ground state of helium in
the simple nonrelativistic, infinitely massive point nucleus
case.

The relative simplicity of the CI calculations mentioned
earlier stems from the fact that the (two-electron) Haxttil-

tonian can be written as

1 2 1 2 Z ZH= ——V, ——V, ————
2 2 rl

(3)

where r& = min(rl, rz) and r~ = max(rl, rz). The angu-
lar integrals involved in the calculations are simple to per-
form using angular momentum algebra while the radial
integrals consist, in the worst case, of two-dimensional
integrations.

The fact that the convergence with I is very poor is
well known; not so well know is the fact that, for a given
configuration, the convergence as the powers of r; are
increased is also poor [1,4]. The convergence of basis set
(1) as the number of powers is increased is presented in
the upper curve of Fig. 1 for the case in which the basis
set contains the single spherical harmonic configuration
s . A least-squares fit of the residual error BE in the
variational energy eigenvalue scaled by Z as a function
of N„, the number of radial functions, yields BE = 0.22 X
N, 9. This is a slow rate of convergence with which it is
very difficult to obtain results accurate to more than a few
significant digits. For example, one would need about
50 radial functions to obtain a convergence of BE/E =
10 6, 500 for BE/E = 10,and 5000for BE/E = 10 ' .
The results are not better if finite-element techniques

0031-9007/94/73(19)/2547(4)$06. 00 1994 The American Physical Society 2547



VOLUME 73, NUMBER 19 PH YS ICAL REVIEW LETTERS 7 NovEMBER 1994

1 0-1

0
10

~ r~ r~ . (5)

10

CQ 10

LU

10

1 0-6

1 0-7

1 2 3 4 5 6 7 8

Number of two-electron angular functions

FIG. 1. Convergence of the variational eigenvalues of the
two-electron Hamiltonian using a basis set with the single
angular configuration s, as the number of two-electron radial
basis functions is increased. BE is the residual error in the
contribution to E/Z2 in a.u. The empty squares denote the
results using Slater basis sets (1). The filled circles denote the
results using the new radial functions of Eqs. (5) and (6).

are used. For example, in the case of heliumlike neon
(Z = 10) one needs of the order of 1600 B splines [2]
to converge to BE/E = 10 s. Calculations using natural
orbitals are somewhat better: with a radial convergence
of 10 a.u. using 24 s orbitals with 36 vectors each
[1],although the error in the calculation is of order 10 7

a.u. The reason for the poor convergence of the radial
functions is that it is very hard for a smooth function
of r& and rq to represent the ratio r~I/r~+' appearing in
the Hamiltonian, which has discontinuous derivatives with
respect to r; at r] = r2 resulting in a cusp-type singularity
of the wave function. This feature of the wave function
having "cusps" at the points in which the potential is
singular has been identified before [5], and attempts to
address this by including ri2 in the CI wave function
have been pursued [3]. In this work we present a new

approach to the radial representation that dramatically
improves the convergence of the variational eigenvalues

by directly addressing this problem while keeping the
simplicity of the CI approach. The motivation for this
new representation is found by rewriting the Hamiltonian

(3) in the form

1 2 1 2 Z Z0= ——V ——V
2 ' 2 " r~ r~

t; = —s;+1,—s;+2, ifs;&1.
The results obtained for the case in which the basis set

contains the single spherical harmonic configuration s are
presented in the lower curve in Fig. 1. The convergence
using basis set (5) is much faster: a convergence of
BE/E = 10 '2 is obtained with only 34 two-electron
radial basis vectors. A least-squares fit of BE yields BE =
8.25%, ; the power of N„ is a factor of 3 times larger
than in the Slater case. The result obtained for the single
s configuration is E, = —2.879028767315(4) a.u. while
the previous accurate value by Carroll, Silverstone, and

Metzger is E, = —2.879028758 a.u.
We now turn our attention to the improvement of the

convergence of the CI energy eigenvalues as the number
of angular configurations in the basis set is increased.
In usual CI calculations, correlation is introduced in the
basis set by mixing different angular configurations of the
form of Eq. (2). The contribution of each configuration is
decided by the diagonalization of the Hamiltonian matrix,
which is equivalent to a minimization of the energy as the
linear coefficients are varied. The convergence of this

type of basis set [Eq. (7)] with the number of spherical
configurations is presented in the upper curve of Fig. 2,
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The basis set has built in the ability to easily deal with the
electron-electron potentia1 at r& = r- . Here we present
results for the helium ground state, for which we use

n, =P;=a;=b; =0,
5 t Oep j. y ~q ~ ~

t; =0, 1, 2, . . . if s; =0, 1,

rl
+ g, , Y,

*
(r&)Y( (r")),

I m r~
(4)
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where we used the fact that for a function f(ri, r2) =
f(r2, ri) is f(ri, r2) = f(r~, r&)

We introduce then instead of (1), the following basis
set, which is an extension of a basis first suggested by
Schwartz in 1962 [6—8]:

FIG. 2. Convergence of the variational eigenvalues of the
ground state of helium as the number of two-electron angular
functions is increased. BE is the residual error in the energy
in a.u. The empty squares denote the results using spherical
harmonics (5). The filled circles denote the results using the
new angular functions of Eqs. (7)—(15).
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in which BE is now the cumulative error in the energy
eigenvalue as the number Nl of angular configurations is
increased. Again the convergence is poor with a least-
squares fit yielding BE = 0.025Nl . It must be stressed
at this point that not all the points in this curve in Fig. 2
could have been plotted if radial functions of ri and r2

were used, as a prohibitive number of vectors would have
been needed for the necessary convergence with seven or
eight angular configurations.

The angular convergence can, however, be improved
substantially if we introduce for the angular functions
the same convergence-accelerating technique used suc-
cessfully for radial functions, namely, nonlinear (angular)
variational parameters. We replace then the radially im-

proved basis set (5) with the new set
Q' fl 18 f2 0 f '71 a' b' &' t a.LMI & 2 ( )~l l ( ' 2)ll 2i

~ ri r2, (7)

Bpp' Bqq' BLL' BMM' ~ (9)

The new optimized angular functions 8-, -, (rl, r2) are
defined by

n„nb

0; , (rl, r2) = g-Cl', (o)A, bLM-(rl, r2),
a', b

(10)

where A, bLM is defined in (2) and o. denotes a set of
nonlinear parameters cr; with i = 1, 2, . . . , n . The values
of lj and 12 are defined by the relation for o. = 0:

(rl r2) Al l LM(rl r2) ~

Notice that in (10) n can be very small while n, and nb

can be very large, so that only a few angular nonlinear
parameters are needed to optimize a large number of
corqponent angular functions in 0-, -, .

In this Letter we present as an example the ground
state of helium for which L = 0 and therefore li = l2

and a = b in the summation in (10). The calculation was
performed with the basis set

(12)

where s; and t; are defined in (6) with the additional
constraint s; + t; ( l; + 3; n = 85; and the coefficients

where the 4-, -, are orthonormalized linear combinations

of a set of optimized angular functions 0-, -, , i.e.,l 1i l21

n„nb

C'l , (r1, r2)-= g W ,
'

, e,bLM--(rl, r2),
a,b

where li, l2, a, b = 0, 1,2, . . . and the coefficients w-,'"-,

are obtained by diagonalizing the overlap matrix of the
angular functions 0-, -, so that

in (10) are chosen as

C-,'-,
' = 0

C-,
' = b(l, a)/b(l, i)

ifa & l ora) l + n, ,

otherwise,
(13)

x and y are defined in terms of the nonlinear coefficients
cr; with

x = o.1/(I + 1) + o.2l and y = o.3 + lr4l. (15)

The coefficients are written in terms of a Taylor expansion
to guarantee that the norms of the 0 functions are finite
in the limit of an infinite spherical harmonic expansion.
Only four angular nonlinear parameters are used to control
85 spherical configurations for each value of 1 (in fact,
cr& is very nearly zero and can be omitted with a very
small loss in precision). The results obtained using this
basis set appear in the lower curve of Fig. 2. The residual
error in the ground-state energy using basis set (12)
converges as BE = 0.026N-, , where Nl is the number
of two-electron angular functions. The power of Nl is
twice as large as the one using combinations of spherical
harmonics. This yields a relative error BE/E = 7.2 X
10 with only seven angular functions and a total of
309 basis vectors, and a relative error BE/E = 3.3 X
10 s with only eight angular functions and a total of 393
basis vectors. (The previous accurate CI value for the He
ground state by Carroll, Silverstone, and Metzger [1]has
a relative error of order 8.4 x 10 6.) One would need
of the order of 60 spherical-harmonics-type functions
[basis set (5)] for a similar convergence. Again, notice
that using the usual Slater spherical harmonics functions,
it is very hard to exceed more than a few angular
configurations, a case in which one has already used an
unpractically large number of vectors [3,9]. For the sake
of argument, with 60 angular functions, this new basis
set would attain a convergence BE/E = 5.4 X 10 '3. All
the calculations in this Letter were performed on an IBM
R6000-375 workstation.

In conclusion, the proper use of r( and r~ in the ba-
sis set reduces drastically the number of radial functions,
while the new angular functions 4 accelerate substan-
tially the rate of convergence of the variational energy
eigenvalues. Between both, we have obtained a dramatic
reduction in the number of basis functions needed in CI
calculations. The application of this method to atoms
with more electrons and to molecules is straightforward
although far more powerful than previous CI implemen-
tations. It is in these complex systems where the large
reduction in the number of basis vectors will be of great-
est use. The angular functions can be trivially extended

where b(l, a) is the ath term in the Taylor expansion of
(1 + x)» around x = 0, i.e.,

tl ifa =0,
I

—,y(y —1) (y —a + 1)x' if a ) 0,
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to systems with more electrons, while the radial functions
can be written, for example, as products of one-electron
functions of ordered radial variables. Notice that, as in the
two-electron case, the Hamiltonian for systems with more
electrons can also be rewritten in terms of these variables
only.

Both the number of functions needed for a certain
convergence and the convergence patterns themselves
might be even further improved from those presented in

this Letter. For this, a search of better choices of powers
for the radial functions and of coefficients for the angular
functions is needed.

In the future, it would be interesting to extend this
method also to relativistic calculations in two-electron
systems. CI has been already tried successfully although
no calculations for Z ( 5 have yielded accurate results
because of the enormous arrays necessary [2]. The ap-
plication of the new angular procedure will be straight-
forward resulting in an increase in convergence. The
application of the new radial functions, however, will be
more complicated because of the partial presence of cor-
relation in the basis set, so that the continuum dissolu-
tion of the variational eigenvalues is a possibility. On the
other hand, at any point in space these radial functions are
simple products of one-electron functions so that a bound-

ary condition might exist that will guarantee bounds.
The author is thankful to Dr. Zonghua Chen for
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Note added. —Since the initial submission of this
Letter, the convergence for the case in which the basis
set contains the sing1e spherical harmonic configura-
tion s-' has improved to BE/E = 5 && 10 's with 125
two-electron radial basis vectors, while the full calculation
for the ground state of helium yields BE/E = 4.6 x 10 9

with 305 two-electron basis functions.
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