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Origin of Two-Electron Atomic Supermultiplets in U(4) Group Embedding
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The origin of the supermultiplet classification of collective rotor-vibrator states of doubly excited
atoms is investigated by embedding the O(4) structure of the problem in a larger U(4) group. This
results in the supermultiplets for the physical states, suggesting an approximate U(4) symmetry of the
two-electron Hamiltonian, acting within the O(4) basis derived from hydrogenic theory.

PACS numbers: 31.15.+q

Two-electron atoms continue to elicit intense interest
as the simplest prototype of electron correlation, a cen-
tral problem in atoms, molecules, and condensed systems.
Starting in 1978, Herrick and Kellman (hereafter referred
to as HK) published several papers [1-6] aimed at a
coherent picture, in terms of collective modes, of the elec-
tron correlation in doubly excited atoms. (These are sys-
tems where both electrons are excited from the ground
state.) HK devised a “supermultiplet” scheme for clas-
sifying and grouping the atomic terms into regular pat-
terns. They interpreted the supermultiplets in terms of
a model of the two-electron atom as a quasirigid linear
structure with the electrons on opposite sides of the nu-
cleus, similar to a highly nonrigid triatomic molecule. In
this model the two-electron excitations are described as
moleculelike rotations and bending vibrations. Since the
appearance of these papers, both the supermultiplet clas-
sification and the collective rotor-vibrator interpretation
have received a wide measure of acceptance. The su-
permultiplets were constructed by collecting together ap-
proximate two-electron O(4) multiplets, originating in the
exact O(4) symmetry of the nonrelativistic one-electron
Coulomb problem, into larger entities—the supermulti-
plets. However, despite compelling physical motivation
and the remarkable spectral patterns that it revealed, one
fundamental aspect of this procedure was mysterious from
the start and remains so even now. This is the formal
grounds, in a group larger than O(4), of the larger classi-
fication represented by the supermultiplets. In particular,
the supermultiplets did not appear to correspond to irre-
ducible representations of a larger group encompassing
the two-electron O(4) as a subgroup.

In this Letter, I address this question by embedding the
O(4) group structure in a larger group, U(4). By this
means U(4) lends its structure to a larger organization
scheme—oprecisely the supermultiplets—than can be ob-
tained from O(4) alone. An important question regarding
the embedding, related to the fact that a U(4) origin for
the supermultiplets had not been suspected earlier, con-
cerns the physical significance of the larger U(4) classifi-
cation, since it contains states not included in the O(4); X
O(4), basis obtained from hydrogenic theory. This is con-
sidered at the end.
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There have been significant developments since the
work of HK which give further impetus to a reexami-
nation of the group theoretical basis of the supermulti-
plets. Hunter and Berry [7] analyzed wave functions of
atomic systems in terms of a basis with collective bending
vibrations and localized, i.e., single-particle Morse oscil-
lators for the radial motion. Ezra et al. [8] developed a
semiclassical treatment of the radial motion of a collinear
atom and found evidence for radial motions that can be
described as an antisymmetric stretch. Rost ez al. [9,10]
gave a unified “molecular orbital” treatment of the radial,
bending, and rotational motion. They found an intricate
interweaving of bend and stretch excitations, rather more
like what might be expected in the highly nonrigid system
envisaged by HK than like the naive Born-Oppenheimer
separability of a near-rigid triatomic molecule. These in-
vestigations support the idea of the atom as being like a
highly nonrigid triatomic molecule, but now understood
to have a systematic involvement of radial motion in the
classification which HK never attempted to describe.

The use here of U(4) in the two-electron problem shares
some aspects of the “vibron” model [11] of molecular
rotation-vibration motion, which in turn is related tc an
early treatment of rigid and nonrigid molecular systems
in terms of correlation diagrams [12,13]. A basic idea
of the vibron model is to treat radial and angular degrees
of freedom of each oscillator with as much generality as
possible by means of the U(4) group, then to correlate the
vibron states to various limiting cases, such as a rigid or
nonrigid molecule, by means of Hamiltonians built out of
operators from appropriate subgroup chains. The work
presented here is based on the observation that the pattern
of correlation [13] from nonrigid to rigid states in linear
molecules results in groupings analogous to the atomic
supermultiplets, except that molecules have independent
stretching degrees of freedom, in addition to the rotations
and bending vibrations of doubly excited atoms. The
basic similarity is that the atomic O(4) shell structure
for each N parallels the structure of a U(4) vibron. The
essential difference is that each atomic O(4) shell has
a more limited basis than the U(4) vibron shell, related
to the absence in the atom of independent stretching
modes.

© 1994 The American Physical Society 2543



VOLUME 73, NUMBER 19

PHYSICAL REVIEW LETTERS

7 NOVEMBER 1994

For our atomic problem, the basic results are the
following. First, the O(4) states of the one-electron
Coulomb problem are embedded in a U(4) group. Then
the states of the two-electron problem are embedded in
a coupled U(4), X U(4), group. The two-electron states
are classified in terms of the subgroup chain

U@); X U(4); D U@z D 0412 D O03)12, (1)
and analyzed with a model Hamiltonian closely related
to this chain. The outcome is that the supermultiplets
are in one-to-one correspondence with the irreducible
representations of the U(4),, group in (1).

First, I outline the construction of the supermultiplets.
Then I present the embedding of the two-electron problem
in U(4), X U(4), and the obtaining of the supermultiplet
scheme using the subgroup chain (1).

In the early 1970s, Herrick and Sinanoglu [14] and
Wulfman [15] showed that the states of two-electron
atoms with both electrons excited from the ground state
obeyed an approximate O(4);, symmetry. Within the
intrashell basis with both electrons in the same shell of
hydrogenic orbitals, the two-electron states are classified
by the labels [P,T] of the irreducible representations
of O(4);. These ideas were greatly expanded upon by
Herrick and Sinanoglu [16] to include intershell states.

HK then explored the grouping of states onto O(4),,
multiplets, and later the aggregations of multiplets which
they called supermultiplets, as a device for recognizing
novel energy-level patterns in the two-electron spectrum.
In 1978, they proposed [1] the initial step in a classifi-
cation in terms of collective molecular-type excitations.
They focused on the O(4),, multiplet with 7 = 0 and
P = N — 1, the highest value of P allowed within the
intrashell manifold. They interpreted the excitations in
this multiplet as rotational excitations of a quaisrigid lin-
ear structure for the two-electron atom, similar to a highly
nonrigid molecule.

The next step was to collect the entire set of O(4),,
multiplets for a shell into supermultiplet schemes [2,3].
I focus here on the d-supermultiplet scheme, which HK
recognized as having the more fundamental significance.
From among the set of O(4),, multiplets obtained within
an intrashell basis, multiplets with a common value of

d=P+T/2 (2)
are collected into a d supermultiplet. The intrashell man-
ifold (N, N) contains N supermultiplets {d}qper With d =
0,...,N — 1. The different supermultiplets {d}spe: rep-
resent excitations of the bending vibration with v, = d
quanta in the polar coordinate of the two-dimensional,
i.e., doubly degenerate, bending mode, and angular mo-
mentum / = 0 along the molecule axis [2,4]. The low-
est energy state within a supermultiplet is a 'S® intrin-
sic state. This intrinsic state is the lowest member of an
O(4) , multiplet constituting a sequence of rotational exci-
tations. The other O(4) |, manifolds within the supermul-
tiplet are rotor series built on / > 0 bending excitations of
the 'S¢ intrinsic state. Thus, each supermultiplet {d},per
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contains rotational progressions built on |/| = 0 bending
excitations, all built on the 'S¢ intrinsic state with v, = «
quanta in the polar coordinate of the bending mode. The
entire rotor-vibrator supermultiplet scheme can be de-
scribed as a hierarchy of atomic terms and corresponding
molecular rotor-vibrator quantum numbers as follows:

N1
(V.N) — > {dhuper - (3a)

d=0

with O(4),, decomposition

= D[P.T|=1[2d.0L[2d — L. 1].....[d.d].

(3b)
and the following relations of atomic and molecular
quantum numbers:

{d }super

[ =T.

v, =N —1—-d.

vp =2(N —1 —d) + .

vy = 2(d = 1).

P=2N -2 - vp,. (3¢)

Within an O(4),, multiplet, L takes the values L =
T.T + 1...., P. Here, L and ! are the total spatial an-
gular momentum and the projection along the molecule
axis; v, is the number of bending quanta; v, is the
number of quanta in the polar coordinate of the dou-
bly degenerate bend; and v3 is a quantum number not
considered by HK, the number of radial, i.e., stretching
gaunta. This has been associated with motion similar
to an antisymmetric stretch [8], hence the standard [17]
molecular notation v;. (In terms of the notation of Rost
et al. [9,10], we use v, = n,: vy = n,.) It should be rec-
ognized that the collinear states treated in Ref. [8] can
perhaps be described just as well in terms of symmetrized
“local mode” stretches, in analogy to the local mode
model of the stretches in the H,O molecule [18]. The
radial motion of (2s,3s) states is described in Ref. [7] by
wave functions with symmetrized combinations (symmet-
ric and antisymmetric, respectively, in the spatial func-
tions) of localized Morse oscillator stretches.

The supermultiplet classification presented in 1980 was
for states derived from intrashell configurations with
both electrons in the same shell N. However, as HK
recognized at the time, the scheme is readily extended
[5] to intershell manifolds (N,n) with n = N. For the
manifold (N, n) one obtains N supermultiplets which here
are labeled {d, f }supe,

N—1
[N~ ”] - 2 {dsf}super » (4a)
d=0

where f is a new label given by

f =n— N.
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(In this new labeling, the intrashell supermultiplets de-
noted above as {d}sper are now denoted {d,O}yper.) The
0O(4) 1, decomposition is [cf. Eq. (3b)]

{d, Fluper = 2.[P.T]

=[2d + £,0],[2d + f — 1,1],...,[d + f.d].
(4b)

The supermultiplets {d, f},,,, for (N,n) are in one-to-one
correspondence with those of (N,N) but with f = n — N
additional terms in each of the O(4),, rotor series.

With this background, we now consider the embedding
of the problem in U(4) and the obtaining of the supermul-
tiplets. The N + 1 shell of the hydrogen atom constitutes
a representation [P, T] = [N, 0] of O(4). We embed this
in the totally symmetric representation {N, 0,0, 0} of U(4).
For example, the N = 3 hydrogenic shell is embedded
in {2,0,0,0}. This decomposes as {2,0,0,0} = [2,0] +
[0,0]. The nine-dimensional [2,0] is the set of states in
the N = 3 shell, and the one-dimensional [0, 0] is an ex-
traneous or at least “extra” member of {2,0,0,0}. The
extra members will be retained at this stage; their status
will be considered at the stage of the U(4);, D O(4),, de-
composition of the coupled two-particle representations.

The next step is the embedding of the two-electron prob-
lem in U(4); X U(4),, which is straightforward except for
one crucial point. It is essential that the electrons be em-
bedded in conjugate representations [19] in order, eventu-
ally, to obtain the supermultiplet classification in the chain
(1). Thus, the two-electron manifold (N; + 1,N, + 1) is
embedded in the representation {N;,0,0,0} X {N>,0,0,0}.
An analogy can be made to the U(3) quark model [20]: To
obtain the octet, the gg must be represented as the con-
jugate product 3 X 3 — 1 + 8 rather than as 3 X 3 —
3 + 6. Embedding the electrons in nonconjugate repre-
sentations leads to a two-electron classification in which
states of constant / are grouped together, rather than states
of constant v, = (N — 1 — d), as with the supermultiplets
[cf. Eq. (3c)]. While physically useful, this alternate clas-
sification scheme will not be pursued further here. An un-
derlying physical connection between the type of represen-
tations coupled and the resulting two-electron classification
is not known at this time.

Now the representation {Ny,0,0,0} X {N,,0,0,0} is de-
composed under the chain U(4); X U(4), D U(4), from
(1). This is given by

N-1

{N{,0,0,0} X {N,,0,0,0} = {2d + n — N,d,d,0}

d=0

N—-1
= D> {2d + f.d,d,0}, (5
d=0

where the labeling {2d + f,d,d,0} of the U@4),, irre-
ducible representations (irreps) is indicative of their even-
tual relation to the {d, f} supermultiplets. For example,
N,n = 3,3 gives

{0,0,0,0} + {2,1,1,0} + {4,2,2,0} =1 + 15 + 84.

Each U(4),, irrep is next decomposed into a sum of
O(4) , irreps. As discussed above, there are extra O(4) |,
multiplets in this sum because some of the one-electron
U(4) members do not correspond to the one-electron
hydrogenlike O(4) basis. The result is [21]

{2d + f,d,d,0} = [2d + f,0] + [2d + f — 1,1] + ---
+ [d + f,d] + (extraterms). (6)

After exclusion of the extra terms, the remaining states
from {2d + f,d,d,0} have precisely the O(4), labels
[P,T] needed to constitute the {d,f} supermultiplet
[cf. Eq. (4b)]. However, this is still not quite enough to
enable the desired identification with the supermultiplets.
Suppose, consistent with previous work, that the super-
multiplet states with O(4),, labels [P,T] are thought of
as originating from an O(4); X O(4), hydrogenlike basis.
The supermultiplet states are not automatically identical
to the O(4),, states contained in the right hand side of
(6). The latter can sometimes be combinations of the
two-electron states from hydrogenic theory with the two-
electron states formed from the “extra” single-electron
levels in the embedding of the shell N in U(4). It is nec-
essary to make sure that we end up with supermultiplet
states that come from the hydrogenic theory, and that
the “extra” states consist purely of nonhydrogenic states.
This can be done by an argument which essentially
says that the two-electron interaction has an effective
U(4) ;; symmetry, but that this interaction operates only
within the subspace of hydrogenic O(4), reps, while the
nonhydrogenic subspace is separated out and perhaps
eliminated altogether. The argument goes as follows.
The U(4) symmetry and effective interaction suggested
by (6) can be modeled by an approximate effective Hamil-
tonian constructed as a sum of commuting Casimir opera-
tors of U(4), and its subgroups in (1), as in the vibron

‘model [11]

H=F + AC(U(4)12) + BC(O(4)12) + CC(O(3)12)
Q)

This effective Hamiltonian is obviously a drastic simplifi-
cation of the true two-electron Hamiltonian. It is nonethe-
less a plausible model because it will be seen below
to lead to a rotor-vibrator Hamiltonian. The usefulness
of such a Hamiltonian in organizing the spectrum com-
prises much of the original rationale for the supermultiplet
classification.

The energy levels of the Hamiltonian (7), for states
in the irrep {2d + f,d,d,0} obtained from the manifold
(N,n) = (N; — 1,N, — 1), are given by [11]

E =F'"+ A[—NiN, + (N; — d)(N; + N)
- (N —d)(N, —d - 3)]
+ B[P(P +2) + T*] + CL(L + 1). (8)
2545
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Consider an “extra” O(4),, multiplet [P,T] from the
U@4),, irrep {2d + f,d,d,0}. There may be several
U(4),, irreps each with an extra multiplet with the same
[P,T]. It turns out that if there is a “nonextra” multi-
plet with the same [P,T], it is from a different U(4),
irrep than all the extra multiplets. From (8), the states
of these multiplets are degenerate term by term if the
constant A for the U(4), Casimir operator C(U(4),2) is
zero. Assume for now that this is the case. The two-
electron states of a degenerate set are combinations of the
nonhydrogenic two-electron states with the two-electron
states from hydrogenic theory. Therefore, we take lin-
ear combinations to get O(4),, states which are, respec-
tively, pure hydrogenic and nonhydrogenic states. If the
nonhydrogenic states are assumed to be nonphysical, let
the nonhydrogenic one-electron basis state energies go
to infinity. This removes the nonphysical two-electron
states. For the remaining states, we retain the U(4),, la-
bel d: Although it loses its group theoretical significance
for the altered states, it retains its physical significance
through the energy-level formula (8) and as an index of
parentage for the supermultiplets. The important point is
that the energy-level formula (8) still holds. We make the
identification of Eq. (3c) between P, T, d and molecular
quantum numbers, except that v, = N + n — 2 — P for
the {d, f} supermultiplets. (This quantum number corre-
spondence differs from Eq. 3.47 of Ref. [11]; it follows
from a correlation diagram analysis like that of Ref. [13]
and the absence of independent stretching modes in the
atom.) We have now arrived at the key result: Each
rotor-vibrator supermultiplet {d, f} of the (N, n) manifold,
along with some extra states, has been obtained in corre-
spondence to the irrep {2d + f,d,d,0} of U(4),:

N-1
N,n)— Y {2d + f =2d + (n — N).d.,d,0}
=0
— Z{d, flsuper + (extra terms). ©)]
d

Making use of the quantum number identification (3c),
Eq. (8) gives an energy-level formula for a rotor-vibrator
spectrum in terms of molecular quantum numbers

E=F + A[—N\N; + v,(Ny + Np) — v,(v, — 3)]
— 2B(N; + N, + 2)(wp, + 1) + B(y, + 1)°
+ CL(L + 1) + BI?
+ 4B(N; + N,) + B(N, + N,)* + 3B. (10)

If the constant A in Egs. (8) and (9) is nonzero, the
degeneracy invoked in the above argument is removed.
To get pure hydrogenic and nonhydrogenic states, a
part must then be added to the Hamiltonian which does
not have U(4),, symmetry. This shifts the physical
levels from the U(4), formula, Egs. (8) and (10). From
inspection of the calculated supermultiplet levels [3], the
constant A in the model (8) is in fact small, and our overall
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conclusion remains. It is important to emphasize that if
Egs. (8) and (10) were used to fit molecular spectra, a
small value of A would be quite typical. The role of the
U(4),, structure in a molecule is therefore in determining
the grouping into sets with common v,. In atoms, we
have seen that this is complicated somewhat, though not
in the end really compromised, by the limitations imposed
by the atomic shell structure.

It is conceivable that the extra states really are physical
states not encompassed by the supermultiplets. One
possibility might be the “frozen planet” states found
semiclassically by Richter et al. [22], but I do not believe
that the extra U(4) states are the way to set these.
The extra states might correspond to some other, as yet
unknown collective states in the atom. But the U(4)
symmetry might simply function in a novel way as on
organizing device for the O(4) states.
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