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Friedel Oscillations in Relativistic Nuclear Matter
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We calculate the low-momentum N-N effective potential obtained in the one-boson exchange
approximation, inside a nuclear plasma at finite temperature, as described by the relativistic o--cu model.
We analyze the screening effects on the attractive part of the potential in the intermediate range as
density or temperature increases. In the long range the potential shows Friedel-type oscillations instead
of the usual exponential damping. These oscillations arise from the sharp edge of the Fermi surface
and should be encountered in any realistic model of nuclear matter.
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In the usual approaches to the study of nuclear matter
near saturation density, the phenomenological potentials
are basic ingredients for the description of the nuclear
interaction in a Schrodinger-dynamical framework [1].
Potentials obtained from the exchange of single pseu-
doscalar, scalar, pseudovector, and vector mesons with
different theoretical approaches [2] lead to satisfactory
quantitative predictions of the observed properties of two-
nucleon systems. A simplified description of the main
features of the N-N interaction in the nuclear medium
can be obtained from the exchange of scalar and vector
mesons only [3].

For higher densities (owing to the Pauli principle) rela-
tivistic effects become essential, not only in the descrip-
tion of the interaction itself, but also for the analysis of the
particle dynamics. In this case, the Lagrangian approach
becomes the natural framework for the study of the nu-

clear plasma [4]. The solution of appropriate Lagrangian
models in the relativistic Hartree approximation (RHA)
provides a satisfactory picture of the thermodynamical be-
havior of relativistic nuclear matter at finite temperature
[5]. Moreover, the relativistic meson propagators in vac-
uum obtained from this approach allow for the calculation
of the N Ninteraction poten-tials [6].

Inside nuclear matter, the polarization effects introduce
important changes in the form of the relativistic meson
propagators. Consequently, the N-N interaction poten-
tials inside the plasma are also strongly modified by the
screening. Their behavior as a function of the thermody-
namical state provides a very explanatory visualization of
these effects and suggests the existence of new collective
phenomena.

In this Letter we report some results of a study of
the N-N interaction potentials obtained in the one-boson
exchange (OBE) model inside symmetric nuclear matter
at finite temperature and analyze some phenomena related
to the screening.

The Lagrangian model used for this calculation de-
scribes the nuclear interaction in terms of scalar o- and

vector cu mesons exchanges [3]. Although such a simpli-
fied model is not able to account for the whole richness of
actual nuclear matter, it gives (when solved in RHA [7])
an acceptable description for its thermodynamical behav-
ior. Moreover, as mentioned above, the involved mesons
reproduce the main qualitative features of the nuclear in-
teraction in the medium. In fact the fictitious o. meson,
which provides the attractive part of the potential at inter-
mediate range, is introduced as a simple parametrization
of the correlated 2'-exchange contribution to the N-N
interaction. It has not been proven that such a parame-
trization is also possible inside the nuclear medium. Nev-
ertheless, the behavior of the screened potential with the
thermodynamical state found here is qualitatively simi-
lar, in the intermediate range, to the one found in a 2m-

exchange calculation [8]. Moreover, as we shall see, the
medium effects on the long-range behavior of this poten-
tial are mainly dominated by the singularities of the mat-
ter polarization contributions and are rather independent
of the details of the basic interaction. They should be
present in more realistic analysis which takes into account
all the relevant meson exchanges.

When solving the model in the RHA, the values of
the constants in the Lagrangian are fixed as follows: The
meson and fermion masses are fixed to their "physical"
values p = 550 MeV, p = 783 MeV, and m =
939 MeV. For the coupling constants, we choose the
values which lead to a satisfactory fit of the satu-
ration properties in the RHA: g2 = 183.3(p, /m)2 and
g'- = 114.7(p. /I)'-. From these values, saturation is

attained at a Fermi momentum of the nucleon P~o =
1.42 fm ', with a binding energy Fb = —15.46 MeV.

In going beyond RHA, the analysis of the small
perturbations of the fermion distribution and meson fields
around the Hartree equilibrium gives the expressions
for the meson propagation equations inside the plasma,
which can be written in a matrix form as D(k)Xi(k) = 0,
where Xi is the column matrix of the components of the
scalar and vector perturbing fields, and D(k) is a 5 x 5
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matrix containing the scalar (II ), mixing (II ), and
vector (II&") polarization tensors, which are functions of
the thermodynamical state and include the renormalized
vacuum contributions [9]. At T = 0 they reduce to
the one-loop meson polarizations [10]. The propagator
matrix for the mixed scalar-vector field inside matter is
given by [9,11] G(k) = —D(k) '. At zero density and
temperature, the meson fields decouple from each other,
and the components of this matrix reduce to the one-loop
scalar and vector propagators in vacuum.

The first step in the calculation of the screened two-
nucleon potential is the derivation of the relativistic one-
boson (o. + co) exchange amplitude diagrams from the

propagator. Now, the difference with the calculation in
vacuum [6] is that the meson propagators are dressed

by the medium, and mixing between both meson fields

appears [9]. Therefore, the usual Feynman rules are
slightly modified in the present case: We must introduce
a i I, factor at each vertex (I, is the coupling matrix
defined as I „=y„g for a = p, from 0 to 3, and
I'4 = g ) and a dressed boson propagator matrix i G(k)
for each internal boson line. Moreover, in the present
calculation we are interested in the structure of the
propagator matrix on the k = 0 axis only, where there
are two poles associated with the "tachyonic" branches,
coming from the vacuum polarization terms [9]. Such
poles are spurious because they arise at large values of q,
where the point-particle approach fails, and the nucleon
structure should be taken into account. This is done
through the introduction of phenomenological monopolar
form factors

f, (k) = (A, —p, ,)/(A, —k )

(a = o, co), at each vertex of the loop and boson-
exchange diagrams. This amounts to multiplying each
squared coupling constant by the corresponding form
factor. With this prescription the spurious "tachyonic"
branches (and the associated poles in the propagator
matrix) disappear [9].

Under these conditions, the relativistic OBE amplitude
takes the form

X [iG(k)] "([X (P', ')]( I).[ (P, )X ]) (2)

where pi and p2 are the four-momenta for the incoming
quasinucleon states, and p] and p2 correspond to the
outgoing quasinucleon states, whereas k = p] —

p&
=

p2 —p2 is the transferred four-momentum. The interact-
ing quasinucleons have effective mass M (as given by the
RHA approximation) and spins Si = 2o i and S2 = 2o2.
The indices m and n run from 0 to 4. Finally u(p, s)
and g are the Dirac spinor and the isospin wave function,
respectively.

The OBE potential is obtained by eliminating the
wave functions of the initial and final states in the
amplitude Eq. (2) taken in the center-of-mass system.

From this expression we obtain the nonrelativistic
potential by performing an expansion in the nucleon
momenta and keeping only the second-order terms.
We have corrected the OBE potential according to the
Blankenblecker-Sugar prescription [12], which includes
the requirement of "minimal relativity" [6] as defined

by V(q', q) = (M/Eq )' VoaF(q', q) (M/E~)'i2 where q
and q' are the c.m. system initial and final momenta of
the nucleons, respectively, E~ = QM2 + q2 and Eq =
QM2 + q'2. Moreover, the above prescription implies
taking the static (ko = 0) limit. After Fourier transforma-
tion one obtains the potential in coordinate space:

V(r) = V, (r) — —[V V2(r) + V2(r)V ]

+ VLs(r) L S + Vgs(r) oi o2 + Vr(r) Si2,

where L = r A p is the orbital kinetic momentum, S =
(I/2)(o. l + o.2) is the total spin operator, and Si2 =
~(o.i . x) (0.2 x) — (o.i o.2) is the tensor operator.

The second term in Eq. (3) is a nonlocal component
which gives a small contribution to the potential. We
shall omit here the study of this component. The other
terms (central, spin-spin, spin-orbit, and tensor compo-
nents) are now functions of the interparticle distance,
as well as of the thermodynamical state of the plasma
(density and temperature). We must emphasize that the
nonrelativistic limit concerns the dynamics of the two
interacting nucleons and the neglecting of retardation
effects. However, the description of the thermodynamical
state of the plasma in the RHA remains fully relativistic.
Also, no low-q approximation has been done for the me-
son propagators.

In the analysis of the potential, the values of the
coupling constants and cutoff parameters in the form
factors have been fixed in order to fit the deuteron and
low-energy phenomenology data [6]:

g = 8.7171, g =25,
A = 14 GeV.

A = 206eV,

(4)

However, in calculating the underlying thermodynamical
state, the coupling constants have been fixed to the above
mentioned values which fit saturation in RHA.

Figure 1 is a picture of the central component of the
potential at T = 0, at saturation density (solid line), and
2.4 times this density (dash-dotted line), for symmetric
nuclear matter (Pf is the Fermi momentum of the nucle-
ons). The same component, calculated at zero density,
with (V~,l) and without (V„„)vacuum polarization contri-
butions has also been plotted. The very short-range region
(r ( 0.6 fm) must be discarded, because the potential be-
havior is dominated there by large-q values, and the non-
relativistic (low-q) limit breaks down [11]. Beyond this
distance, a hard core and a potential well appear both in
vacuum and at finite density. At zero density, the vacuum
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FIG. 1. Central component of the potential at T = 0 at zero
density with (V~„,) and without (V„,) vacuum polarization
contributions at saturation density (P//m = 0.3) and 2.4 times
saturation density (P//m = 0.4). The dotted line (with P//m =
0.3) corresponds to the central component of the potential at
saturation density obtained from different values of the model
parameters.

polarization effects enhance the slope of the hard core
and increase the depth of the potential well by an impor-
tant amount. The slope of the repulsive-vector Yukawa
component is strongly raised by the vacuum polarization,
whereas the attractive-scalar component remains nearly
unaffected by these effects. This explains the observed
behavior in vacuum. The matter polarization effects in-
crease the range of the vector component, and therefore
the depth of the well is reduced as density grows. It dis-
appears shortly above the saturation density [11]. Similar
results are obtained if the attractive cr contribution to the
N Npotential is re-placed by the 2m. exchange [8].

At larger distances, the screening effects of the
medium introduce important qualitative new features.
Whereas in vacuum the potential shows an exponential
damping with the distance, an oscillatory behavior
appears at finite density, whose amplitude is damped
as an integer power of the distance. These are Friedel
oscillations, similar to those encountered in many low-
temperature Fermi systems [13]. Mathematically, these
oscillations arise from the fact that the matter polariza-
tion contributions to the screened meson propagators
show singularities in their derivatives at q = 2PI (Kohn
singularities [14]). After Fourier transformation, such
singularities introduce oscillations in the r-space poten-
tial. More detailed analytical calculations [15,16] show
that, in this region, the potential can be decomposed into
rr and cu Yukawa-type components (which dominate
at shorter distances) and this Friedel-type component,
which determines the large-r features and is long ranged
and oscillatory. From a physical point of view, the Kohn
singularity is associated with the sharp character of the
Fermi surface at T = 0 and is rather independent on the
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details of the interaction. Consequently, the long-range
oscillations of the screened interparticle potential must
be a universal feature of interacting degenerate Fermi
systems. Indeed, this has been found for degenerate
nonrelativistic [17] and relativistic [18] electromagnetic
plasmas, for a QCD plasma [19], and for the screened
one-pion exchange potential in a relativistic nuclear
plasma [15].

In the calculation of Ref. [8], where the 2m. exchange
is explicitly considered, no Friedel oscillations have
been found. In fact, this paper was concerned with the
intermediate range of the screened N-N potential, and
the complete effects of the matter polarizations were
not included in the meson propagators. Such effects go
beyond the effective meson mass variation with density,
considered by the authors. Therefore, it is not surprising
that they do not obtain oscillations in the long range.

As a test of the small sensitivity of the Friedel behavior
to the details of the interaction, we have plotted in Fig. 1

the central component of the potential at saturation den-
sity and T = 0 (dotted line), now using for the potential
the values of the coupling constants which fit saturation in
the RHA, which are very different from the ones used
in the previous calculation for the same thermodynamical
state. We observe important differences in the interme-
diate region in both cases but, in the long range, the os-
cillations of the potential are only slightly affected by the
changes in the intensity of the couplings.

In Fig. 2 the spin-spin component of the potential
is plotted at T = 0, in vacuum (PI = 0), at saturation
density (P//m = 0.3), and 2.4 times saturation density
(PI/m = 0.4). A glance to this drawing shows also
a Friedel-like oscillatory behavior whose amplitude in-
creases with density. (The spin-orbit and tensor com-
ponents of the potential also show a similar behavior:
in all cases the amplitude of the oscillations increases
as density grows [11].) At saturation density, the most
important effect in the long range appears on the cen-
tral potential component, where the amplitude of the first
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FIG. 2. Spin-spin component of the potential at T = 0 for the
same values of the Fermi momentum as in Fig. 1.
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oscillation reaches 2 MeV for a distance of around 2 fm.
Nevertheless, for higher densities the oscillations of the
spin-spin component reach comparable maxima. Indeed,
for Pf/m = 0.4 the amplitude of the first oscillation in
the central component is -8 MeV at r,„=1.5 fm (see
Ftg. 1), whereas the spin-spin component reaches 10 Me V
at the same distance (see Fig. 2). The position of the first
maximum of the oscillations, r „,is related to the Fermi
momentum through [15] Ppfr, „=m. . The ratio be-
tween the position of the first maximum of the oscillation
and the mean interparticle distance d = (37r /2Pf)'l is
nearly constant with density (r,„/d = 1.28).

At finite temperature, the slope of the hard core is
slightly reduced, as shown in Fig. 3, where the central
component has been plotted at saturation density and vari-
ous temperatures. In the intermediate range, the effects
of temperature on the central potential reduce the depth
of the well. The well disappears for temperatures beyond
40 MeV. This can be interpreted in terms of the modifica-
tions introduced on the Yukawa-type components by the
temperature in this region. As temperature increases, the
ranges and intensities of these Yukawa components are
modified in such a way that in the balance, the vector-
repulsive part becomes dominant and the well disappears.
(See Refs. [15] and [16] for a more detailed analytical
study. )

Concerning the long-range behavior of the potential, as
temperature increases the Fermi distribution function be-
comes smooth and the Kohn singularity (and the asso-
ciated oscillations) disappears in all the components of
the potential. This is indeed observed in Fig. 3. The
amplitudes of the oscillations decrease with temperature.
As can be checked analytically [15,16] this amplitude

4.

r(frn)

FIG. 3. 3. Central component of the potential at saturation
density for different temperatures.

at a fixed distance and constant density is exponentially
damped with temperature. The oscillations in all the com-
ponents disappear for temperatures between 40—80 MeV.
Beyond this, the potential becomes exponentially damped
with the distance.
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