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Magnetic Vortices from a Nonlinear Sigma Model with Local Symmetry
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We consider a nonlinear O(3) model in 2 + 1 dimensions minimally coupled to Chem-Simous gauge
fields. All the static, finite-energy regular solutions of the model are discussed. Through a suitable
reduction of the gauge group, the given solutions are mapped into an Abelian purely magnetic vortex. A
two-dimensional Euclidean action reproducing such a vortex is also obtained and is that of an Abelian-
Higgs model with topological term.
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The two-dimensional nonlinear O(3) model possesses
solutions which are interesting both from a mathematical
and physical point of view [1]. From the mathematical
point of view, it provides one of the simplest nontrivial ex-
actly solvable nonlinear systems [1—3], whereas its direct
physical application is in the two-dimensional isotropic
ferromagnets [1]. Moreover, the connection of this model
to the long-wavelength fluctuation of antiferromagnets has
been also established [4]. Beyond this, it is interesting
and appealing that the model strongly resembles some cru-
cial properties of Yang-Mills theories in four dimensions
[2]. In this Letter we shall see that the nonlinear tT model
(NLSM) has another unexpected application in the physics
of the magnetic vortices. We elect the global O(3) sym-
metry of the (2 + 1)-dimensional model to be local, and
we provide all the static, finite-energy regular solutions of
the gauged model. These solutions are remarkably simple
and reproduce, under a suitable contraction of the gauge in-

dices, an Abelian purely magnetic vortex that corresponds
to a nonperturbative solution of a two-dimensional Eu-
clidean ~q& ~4 model coupled to an Abelian gauge field.

Static soliton solutions of the (global) O(3) model
in 2 + 1 dimensions are well known [1]. Given the
Lagrangian [5]

L = 28„$'8"@'+ 2A(@'p' —1), (1)
the equations of motion are

(2)

For static configurations, all the solutions that extremize
the action satisfy the conditions [1]

e~ej @ Blf (3)
Moreover, each finite-energy solution satisfying (3) is
characterized by a topological number

cu' x cu =— @' x tt, conditions (3) written in terms of
~ simply become 8;cu = ~ie;, d, cu, where cu = ~' +
its~ He. nce cu is an analytic (or antianalytic) function,
depending on the sign chosen. For definiteness, let us
consider the analytic case; then the simplest solution is
for instance [6] a zero (or a pole) of order ~m~:

~ = ((./ o)"'.

where m 6 Z, and zo 4 0 is an arbitrary constant. The
energy associated with the solution (5) is

E=4 dx Jd~/dzf
, , = 4n. imj .

[I+ I

I'j'

The constant zo is clearly related to the size of the soliton,
whereas the integer m is nothing but the topological index

Q of the solution so that E = 4m.
i Q ~.

Now, we make local the global symmetry. To this pur-
pose we introduce O(3) gauge potentials A'„, a covari-
ant derivative D~P' = B„P' + e'"'A @', and a gauge
potential Lagrangian; for the latter we propose a Chern-
Simons term, so that the complete Lagrangian reads

L = ,D~Q" D"$' +—-„A(@"@" —l)

—-~e"' 8 A" A" + —e' 'A" A A' (7)2 P v p 3 p, v p

The equations of motion are then

1
Q = d xe;Je'"'@'8;@ 8, @', (4)

D„D"P' = A@' = P"@ D„D"@",

and two solutions with the same topological number Q E
Z are homotopically equivalent.

By performing a stereographic projection in the internal
O(3) space of the sphere P'@ = 1 into the plane

where F„„=B„A", —8 A„+ e "'A"„A; is the held
strength and J„' the (covariantly) conserved non-Abelian
matter current.

2524 0031-9007/94/73(19)/2524(4)$06. 00 1994 The American Physical Society



VOLUME 73, NUMBER 19 PHYSICAL REVIEW LETTERS 7 NovEMBER 1994

To find static, finite-energy solutions of Eqs. (8), we minimize the energy associated with the Lagrangian (7):

E= d& ~= 2 d&Dp Dp +Di D

Using the identity

4 ID;Q' ~ e'"'e;&@"D)@'I = 2D;$'D;$' ~
2
e' 'e;1@ 8;Q" BJ ~ el 8; Q A @' ~

2 e;J.@'F;,

and taking Eqs. (4) and (Sa) into account, it follows that

E=
2 dX Dp Dp + 2 D; w e e'J' D +4 4 (10)

(A'A') = (A'@'), (1 la)

In passing from Eq. (9) to Eq. (10) we dropped the

surface term e;; f d2x 8;(P'A,'), as consistent with the

asymptotic behavior of the solutions we shall provide.
Clearly, for static solutions, the minimum E = 4m IQI

of the energy is attained when

jected plane is a solution of Eq. (12a). The corresponding
value of Ao [nontrivial part of Eqs. (12)] can be immedi-

ately obtained from Eq. (12c).
These non-Abelian solutions give rise to a nontrivial

vortex configuration under a suitable contraction of the

gauge group: In fact, we can construct a gauge invariant

Abelian field strength by setting [7,8]

Dy ~ abc @bD yc (1 lb)

abc D ya D yb yc @aFa (13)

D ya +.&abc& yb D @c (12a)

It is easy to check that conditions (11) are indeed

equivalent to Eq. (8b), the configuration being static.
Equation (lla) fixes the gauge structure of Ao as Ao =
c(x)P', and the value of c(x) can be obtained by
consistency between Eqs. (Sa) and (lib), which gives
c = ~(1/x). The remaining components A', of the gauge
potentials are pure gauges, as can be seen by substituting

Ao = +.(I/~)P' in Eq. (Sa). Therefore, all the static,
finite-energy configurations that extremize the action of
the model (7) satisfy the conditions

By substituting Eqs. (12) in (13), the Abelian field

strength has a vanishing electric field E = 0 and a mag-
netic field which is equal (up to a sign) to the non-Abelian

Hamiltonian M,

(14)

where cu' = des(z)/dz [or des(z)/dz] for the choice of
sign + (or —). This is the typical configuration of a purely
magnetic Abelian vortex. In fact, the flux of the magnetic
field is quantized

dxB=~ dx =~4m (15)

A; = i Tr(ir'U ' cl;U),

Ao = ~ (I/~) @',

(12b)

(12c)

Q being the integer characterizing the corresponding non-

Abelian solution [see Eq. (4)].
For definiteness, from now on we shall choose cu(z)

analytic as in Eq. (5). Then, the sign in Eqs. (14) and

(15) is +, ~Ii = 4m. ImI, and

for any gauge group element U = exp[ —ia'(x)ir'/2], cr'
being the Pauli matrices. Equations (12a) and (12b) im-

ply that the matter field solutions of the gauged NLSM
are trivially equivalent to those of the nongauged NLSM
[trivial part of Eqs. (12)]. In fact, being Eqs. (12) are co-
variant under gauge transformations, Eq. (12a) can be re-

placed by Eq. (3) when written in terms of the U-gauge
transformed field P U 'PU. Consequently, making
local the O(3) symmetry does not affect either the value of
the energy or the matter field solutions: Any analytic (or
antianalytic) function ca(z) in the stereographically pro-

4m2 I' r ) &rol+
I

—'
Ir &rp) (r) (16)

eg. (17)

where IzoI = ro 4 0.
Since K = 0, A can be chosen to vanish, the configu-

ration being static, whereas an Abelian gauge potential A

reproducing the magnetic field (16) is, for instance,
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It should be noticed that the profile of the magnetic
field is identical to that of the soliton solutions of the
gauged nonlinear Schrodinger equation recently discussed
by Jackiw and Pi [9]. However, in our case the vortex
is electrically neutral, whereas in the Jackiw-Pi solitons,
as the dynamics of the gauge fields is governed by an
Abelian Chem-Simons term, any excitation with magnetic
fiux iIi necessarily has a nonvanishing electric field [9].

The identification (13) was first proposed in Ref. [7],
in a (3 + 1)-dimensional context, reproducing mag-
netic monopole solutions from static solutions of an

SU(2) Yang-Mills-Higgs model [7,10]. In our (2 + 1)-
dimensional case, the same identification (13) yields
to purely magnetic vortices from the solutions of the
NLSM. However, an important difference between the
contraction (13) in 3 + 1 and lower dimensions should be
pointed out. In 3 + 1 dimensions, the field strength g~,
defined as in (13) and reproducing the monopoles does
not satisfy the sourceless Maxwell equations (Bianchi
identities) e""j' B„g~ = 0. Rather, the divergence of
the dual tensor *g „=e„„q gj' defines the conserved
"magnetic" current, whose charge is just the monopole
charge. On the contrary, in 2 + 1 dimensions, the
field strength P~„given in (13) does indeed satisfy
the Bianchi identity ej""j'8„+„~= 0. Consequently, in

2 + 1 dimensions one might wonder whether an Abelian
model reproducing the magnetic vortices (17) exists. In
the affirmative case, the vortices would be completely
independent from the NLSM, contrary to what happens
in the corresponding (3 + 1)-dimensional case with the
monopoles and the SU(2) Yang-Mills-Higgs solitons.

An Abelian model that reproduces the magnetic field

(16) is, as already mentioned, the Jackiw-Pi soliton [9].
Here, we shall provide a different model reproducing the
same magnetic field.

Since all the temporal components of the Abelian
configuration (13) trivially vanish (static solutions with
E = 0), instead of looking for static solutions of a (2 +
1)-dimensional model, we shall consider a Euclidean two-
dimensional model reproducing the nontrivial (magnetic)
part of the vortex. We propose a complex scalar field
minimally coupled to a Maxwell gauge potential, with an
additional topological coupling:

= 4$ijSij + (DiP) DiF P F&ij Sij

(18)

where D, p = ij; p —iA; y and V(q*p) is a scalar poten-
tial to be determined. The Lagrangian (18) is both ISO(2)
invariant as well as U(1) gauge invariant. Substituting
the gauge potential (17) in the Maxwell equations arising
from (18)

one can get the form of the scalar field p such that
Eq. (19) is satisfied. Up to an irrelevant constant phase.
it reads

21ml

(
r )"' (rr)"' i(lm[ —1)0

The potential V(p*p) is determined by imposing that
the scalar field p(r) given in Eq. (20) satisfies its own
equation of motion, [I);23; + e;,g, —dV/d(p*q&)]rp =
0, and solving this equation for V(p*p). The solution is
remarkably simple and gives

(2i)

From Eqs. (17) and (20), both p(r) and A(r) are always
regular if lm l

~ 1. Asymptotically, ) p(r) l
—r

whereas A —2mVH, which is the correct behavior repro-
ducing iIi = 4mlml. Therefore, for any m 2 Z and dif-
ferent from zero, Eqs. (17) and (20) provide nonperturba-
tive, regular solutions of the Lagrangian (18) with poten-
tial (21).

Stability of these solutions can be established by
substituting the identity

(22)

in the classical action, obtaining

dxd: =fdx ~(D iDr)p~

+ , (8 + q&*y) ~ 0—, (23)

where we omitted the last (surface) term in Eq. (22) as
it vanishes when integrated. From Eqs. (16), (17), and

(20) it can be easily seen that the solutions satisfy the
following conditions:

8 = p'p, D, p —-= —is i+, &. (24)

[Had we chosen the minus sign in Eqs. (14) and (15), the
right-hand side of conditions (24) would have changed
sign. ] Consequently, on the classical solutions, the Eu-
clidean action achieves its minimum S = 0. As expected,
the same conditions (24) are also satisfied by the Jackiw-
Pi solitons [9], although in a different context and with

a different Lagrangian. The second condition (24) shows
that the Abelian solutions are self-dual: the Abelian con-
traction (13) maps O(3) self-dual solutions in U(1) self-
dual ones. Combining together conditions (24), one finds

that q *p satisfies the Liouville equation,

b, 1n(p*y) = —2(q *@).

2526



VOLUME 73, NUMBER 19 PHYSICAL REVIEW LETTERS 7 NovEMBER 1994

This is not surprising: [B) in Eq. (14) provides, in fact,
the most general solution of the Liouville equation (25),
whereas Eq. (16) gives its radially symmetric solution.

Here, we conclude with two comments:
(a) The generalization of the Abelian solutions when

cu(z) is an arbitrary analytic function is straightforward
and gives

A; = e;J —
B~ in[I + )ru(z)( ], p =

2 (26)
2'�'(z)

1+ Nz

These are the general solutions of Eqs. (24). The radially
symmetric solutions previously discussed are obtained by
choosing cu(z) as in (5). N-vortex solutions of the Abelian
model can be easily obtained, for a specific choice of
cu(z), following the same lines of Ref. [9]. Such solutions
are very likely related to the N-soliton solutions of the
NLSM under contraction (13) of the O(3) group.

(b) The presence of the topological coupling

(p p) e;,gl in the Euclidean action makes it diffi-
cult to figure out a possible (2 + 1)-dimensional action,
reproducing Eq. (19) as its static Harniltonian. Rather, an

intriguing possibility for future investigations could be to
interpret the Lagrangian (18) as an effective Lagrangian
of a more elementary theory. To this purpose, it should
be noticed that the topological coupling could be gener-
ated by bosonization of fermions minimally coupled to
the gauge field [11].

It is a pleasure to thank Roman Jackiw for useful
discussions.
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