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Entropy in Dilatonic Black Hole Background

A. Ghosh* and P. Mitra~

Saba Institute of 1Vuclear Physics, Block AF, Bidhannagar, Calcutta 700 064, India
(Received 8 July 1994)

The entropy of a scalar field is calculated semiclassically in the background of a dilatonic black hole.
The area and cutoff dependences are normal except in the extremal case, where the area is zero but the
entropy nonzero.
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It is well known that the area of the horizon of a black
hole can be interpreted as an entropy [1] and satisfies all
the thermodynamical laws. This is not yet understood in
terms of the usual formulation of entropy as a measure of
the number of states available, but the naive Lagrangian
path integral does lead to a partition function from which
the area formula for entropy can be obtained [2] by
neglecting quantum fluctuations.

There have also been some attempts at calculating the
entropy of quantum fields in black hole backgrounds [3,4].
The values thus obtained are contributions to the entropy
of the black-hole —field system. These calculations have
produced divergences, but the area of the horizon has
appeared as a factor. This has been interpreted to mean
that the gravitational constant gets renormalized in the
presence of the quantum fields [4]. We shall investigate
whether similar phenomena occur in the case of dilatonic
black holes [5,6] where it is possible to have a vanishing
horizon area.

The low-energy limit of string theory with unbroken
supersymmetry contains a massless dilaton field. Mod-
els where these dilatons are coupled with gravity may be
used for studying black holes with small Compton wave-
lengths. The simplest four-dimensional model is

The model can be extended to have electromagnetic
interactions by including the term
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where M is the mass of the black hole, Q its magnetic
charge, the parameter a is defined by

in the action (3). Exact black hole solutions of this
model have been found with nonzero charge and angular
momentum.

The black hole solution with zero angular momentum
strongly resembles the Schwarzschild solution of standard
general relativity:
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This changes the action to
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which is standard Einstein gravity coupled with a massless
scalar field. Thus g„, is the appropriate metric for
gravitational studies and in fact all theorems of general
relativity are applicable in this metric. This is not the case
with the original string metric g„,which, however, is the
metric seen by the string. We shall confine ourselves to
the metric g„,.

where P is the massless dilaton field, R is the scalar
curvature, and g„, is the metric. As the curvature term
contains an extra exponential factor, this is often removed
by the conformal transformation

and @0 is an arbitrary constant. This black hole has,
as usual, a horizon at r = 2M. An interesting feature is
that a curvature singularity occurs at r = a. The so-called
extremal solution corresponds to the coincidence of these
two regions and thus has a = 2M. This extremal limit
is interesting also because the area 4m 2M(2M —a) of
the horizon vanishes. All this is from the point of view
of the gravitational metric. However, from the string
theory point of view, the geometry in the extremal limit
is perfectly nonsingular. In the string metric the horizon
disappears and as r ~ 2M, the spacetime splits into a
(1 + 1) dimensional Minkowski spacetime times a sphere
of constant radius 2M (the throat)

As argued in [7], the partition function for the system
can be defined by the (Euclidean) Lagrangian path inte-
gral for the gravitational action coupled with matter fields.
The dominant contribution will come from the classical
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solutions of the action. We may approximate the Eu-
clidean action by taking something like

SE[g, @,F, ){{)]= S) [g,{,{t.),&, F,{]+ S2 [g,&, P] + . . .

(7)
where cp is the sealer field to be considered in the back-
ground of the dilatonic black hole. Quantum fluctuations
of the metric, the electromagnetic field and the dilatonic
field, are neglected and these variables are frozen to their
classical values. The partition function can then be taken
as

Z
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The contribution of the piece Si to the entropy of the
dilatonic black hole is known to be given by one-fourth of
the area of the horizon [8]. We consider the contribution
of the scalar field p to the partition function through the
piece S2.

We employ the brick-wall boundary condition [3]. In
this model the wave function is cut off just outside the
horizon. Mathematically,

where e is a small, positive, quantity and signifies an
ultraviolet cutoff. There is also an infrared cutoff

p(x) =0 atr = I,

with L )& 2M.
The wave equation for a scalar field in this spacetime

reads
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A solution of the form
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satisfies the radial equation
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An r-dependent radial wave number can be introduced from this equation by
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Only such values of E are to be considered here that the above expression is non-negative. The values are further
restricted by the semiclassical quantization condition

n„~ = dr k (r, I, E),

where n„has to be a non-negative integer.
Accordingly, the free energy F at inverse temperature P is given by the formula
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We ignore this part [2,3]. The contribution of a nonzero
M is singular in the limit e 0. The leading singularity
is linear:
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45e ( 2M]ll, p )I, (18)

where the lower limit of the E integral has been approx-
imately set equal to zero. If the proper value is taken,
there are corrections involving m2p2, which will be ig-
nored here. This result reduces to the formula [3) for the
Schwarzschild black hole when a = 0. In general, there is
simply a multiplicative factor (1 —a/2M) .

There is a logarithmic singularity as well, but it
is in general ignored because of the presence of the
linearly divergent term Fh„. However, the linear term
vanishes when a = 2M, i.e., when the black hole becomes
extremal. In this case, the logarithmic term is the
dominant one. It is

Here the limits of integration for I, E are such that the
arguments of the square roots are non-negative. The
I integration is straightforward and has been explicitly
carried out. The E integral can be evaluated only
approximately.

The contribution to the r integral from large values of
r yields the expression for the free energy valid in flat
spacetime (M = 0):

its inverse dependence on the mass, while the quantity
2M' may be regarded as giving an invariant measure
of the distance of the brick wall from the horizon [3].
As the entropy of the dilatonic black hole itself is S =
(area)/(4G) (where G has been set equal to unity) [S],
the above divergent contribution may be understood as a
renormalization of the gravitational coupling constant G
[4]. However, quantum gravity being nonrenormalizable,
this interpretation cannot be extended to include quantum
fluctuations of the gravitational fields.

In the case of extremal dilatonic black holes a log-
arithmic formula appears, in which the usual factor
(2M) /2Me is replaced by its logarithm Fo.r these black
holes, where the area of the horizon vanishes, one might
have expected the entropy to vanish altogether. What
does happen is that the linear divergence vanishes, but the
logarithmic divergence, which is of course weaker, stays
on. A similar logarithmic divergence is known to occur
if the theory is truncated to (1 + 1) dimensions [4]. Our
calculation shows that this is already present in (3 + 1)
dimensions. But this divergence cannot be regarded as a
renormalization of G because even with a renormalized

G, the zero area should have made the entropy zero.
To summarize, we have calculated semiclassically the

entropy of a scalar field in the background of a dilatonic
black hole. The results are similar to the case of
ordinary black holes and involve a linearly divergent
renormalization in general. But the area of the horizon
may vanish here, and in that extremal case, the entropy of
the scalar field does not vanish. The singularity becomes
logarithmic.
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in the same approximation as above.
The entropy due to a nonzero M can be obtained from

the formula
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Thus, for a 4 2M, namely for nonextremal dilatonic
black holes, the Schwarzschild expression is valid, but
with the area factor (2M) corrected by the appropriate
coefficient (1 —a/2M). Note that the factor (2M/p) is a
constant if the Hawking temperature is used, because of
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