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Line Dispersion in Homogeneous Turbulence: Stretching, Fractal Dimensions, and
Micr omixing
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Motivated by the understanding of the turbulent mixing mechanisms at small scale, the time evolution
of an initially regular passive scalar pattern in three-dimensional homogeneous turbulence is investigated
in a line-dispresion experiment. The major observation is the increasing space-fillingness of the line
as time elapses. It is shown that the evolution of the fractal dimension dt(t) of the support of the line
can be related to the mean-field Kolmogorov scaling of velocity differences incorporating dissipative
corrections and an expression for dI(t) is derived that compares very well with the experiments for
several distinct Reynolds numbers. Following, a criterion of micromixing is discussed.

PACS numbers: 47.27.Gs

The ability to distort material fluid surfaces in com-
plex convoluted geometries is one of the most common
and striking features of turbulent flows. In most high
Reynolds number shear flows, the growth of the primary
instabilities results in the fragmentation of the streams in-
volved in macroscopic "coherent packets. " A "packet, "
whose frontier is initially smooth is further stretched and
folded by the smaller-scale activity of the flow to ulti-

mately fill the available space in a more or less compact
manner. This is the problem of turbulent mixing which
is particularly important when chemical reactions occur
between the mixed streams since the stretching of the tur-

bulent motions and the consecutive area generation of the
frontier of the packet govern the amount of area per unit
of volume of the interface and the intensity of the ex-
changes across it.

In order to address this question in the most general
terms, we have considered the case for which the "fron-
tier" has initially the simplest shape of a straight line

[1,2], boarding a ribbon of passive tracer immersed at the

origin of time in a grid-generated turbulence.
Our goal is to depict the evolution of the geometry

of the support of the line [3] as a function of time and

to understand how the scale-dependent stretching in the
flow governs the time-dependent roughness or "space-
fillingness" of the line.

The experiments have been conducted in the 80 &&

80 cm2 vein of a wind tunnel. A 1/10 mm tungsten wire
was stretched across the whole section height normal to
the mean flow 30 meshes downstream of a square mesh
(M = 7 cm) square rod (1.5 cm thick) grid. The ribbon of
tracer is realized by the vaporization of a thin liquid oil film
coated on the wire. The extremities of the wire are con-
nected to a condensator which discharges in about 30 ms
under 60 V through the wire. The vaporization time of the
oil film is nevertheless larger than the wire heating time,
increased by the cooling time during which the surface
temperature of the wire is above the oil vaporization tern-

perature. Once shedded, the smoke ribbon produced is
convected downstream, losing progressively its rectilinear
shape under the action of the turbulent velocity field (the
Peclet number is much larger than unity). It is made visi-
ble by a white homogeneous light sheet, sufficiently thick
to contain the whole distorted ribbon at all times. The tem-

poral evolution of the ribbon is recorded, through the trans-
parent walls of the wind tunnel, by a charge-coupled device
video camera positioned at right angle with respect to the
direction of the mean flow at the rate of 25 frames per sec-
ond. The images are further processed, one by one, in the
following way: on each digitized picture (768 X 512 pixels
on 256 grey levels), the ribbon is extracted from the back-
ground and its external frontier is particularized (Fig. 1).
One then has access that way to the concentration field of
smoke along the ribbon and to its external frontier shape

as a function of time by steps of 25 s.

FIG. 1. Evolution, at different consecutive instants spaced by
steps of 2/25 sec, of an advected tracer ribbon in a grid-
generated turbulence. Re = 33. The external frontier of the
ribbon is particularized by the white contour. The integral
length scale I is 2.2 cm and the height of the picture cov-
ers 30L.
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This line defines the support of the ribbon, indepen-

dently of the different local concentration levels which,
as for them, reflect the cumulated stretchings the ribbon
has undergone. As stated above, we want to character-
ize the support of the line by a parameter which reflects
its "roughness, " its space-fillingness, and the hierarchy
of spatial scales that participate to its deformation. As
a function of time, and for different moderate Reynolds
numbers, we have measured the fractal dimension of
the projected line. One can show [4, 5] that the fractal di-

mension of the projection of the line is equal to the dimen-

sion of the actual line embedded in the three-dimensional

space as long as this dimension remains less than 2; this
is always the case in the present experiments. In grid
turbulence, the root mean square velocity fluctuation u'

and the turbulence integral length scale L depend on the
mean velocity U, on the mesh size M of the grid, and on
the downstream location. They have been computed from
the laws given by Batchelor and Comte-Bellot and Corrsin

[6]. The Kolmogorov length scale g is about 0.15 cm, L
is about 2.3 cm, and the Taylor scale A is about 1.5 cm.
The Reynolds number Re = u'L/v varied from 18 to 35
(Re}}t= UM/ p about 7200). The resolution of the images
was 11 pixels per centimeter in such a way that an image
typically covers 30 integral scales L and that g is just
resolved.

The central observation is that the fractal dimension of
the line, which is initially 1 (straight line), actually in-

creases with time. The increase is linear and all the more
rapid that the Reynolds number is large [Figs. 2(a) and

2(b)]. These results are meaningful for short time inter-

vals since the local features of the turbulence gradually
change downstream of the grid. The turbulent kinetic en-

ergy u'2 behaves like t with n = 1.35 and L like tp

with P = 0.4 [6]. Although these are power-laws, the
turbulent field in which the line is embedded cannot be
considered as stationary for time intervals larger than the
local integral scale turnover time t(L) = L/u' but, as it is
shown now, this point is of negligible importance.

Since Kolmogorov 1941 [7], the attention has been
drawn to the longitudinal velocity difference Bu(r) taken
between two points separated by a distance r. When the

energy is assumed to be dissipated at a uniform rate a in
the medium, a direct dimensional argument yields

Bu(r) —(sr)»

with f = 3. In this expression, the notation Bu(r)
represents the rms value of the longitudinal velocity
difference: J(Bu (r)). The law (1), and its r dependence
has been extensively measured with a good accuracy
(except for a very weak intermittency correction at this
structure function order) and can be considered, at large
Reynolds numbers, as an experimental fact [8]. The
relation (1) gives the separation velocity of two particles
or, equivalently, the stretching velocity of the segment
which links them for scales r lying in the inertial range
(g ( r ( L). The relative diffusion of two particles

10

1000

~00

10

10 100 1000
0

(b)

25 I ~ I f } I ~ f I } f I

12

I

(
1 1 I I } I I I I } I

1.15

1.05

!

I
I

j ~
}

0
0 ;

'b
I a i }

~ ~ I

;:0

,'0 }

Bu(r) = f(r/rt) («)» (2)

with the following constraints

f(r/~)
1 —g,g„}(r &

f(r/g)

(3a)

(3b)

A simple form for the continuous function f may
be chosen as

f(r/rt) = 1 —e &'t") '
(4)

which expresses the relaxation from the scaling law (1) for
r/g »1 to the viscous dominated regime for r/rt»1. The
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FIG. 2. {a) Log-log plot of the number N{ro) of segments
of size ro needed to cover a contour line, as a function
of r&, counted in pixels. p and L are respectively
the Kolmogorov and integral length scale. Re =
33, t/t{L) = 0.375. {b) Fractal dimension of the lines as
a function of time, for two distinct Reynolds numbers.
~, Re = 33, t(L) = 0.97 sec; o, Re = 18, t{L) = 1.92 sec.

is an increasing function of r, from which follows the
celebrated Richardson "four-third law" [9]. Nearer from
the dissipation scale g, the velocity difference Bu(r)
goes to zero proportionally to r: viscous damping only
allows for solid rotation or simple shear. It is known

that, for small r separations, Bu(r) —u'2(rz/Az) and

thus, with g = (v3/s), that the velocity difference

itself writes Bu(r) ~ (r/rt) ~ (sr)'~ which indeed

goes to zero like r for r 0 [10]. We want to describe
continuously the r dependence of the velocity Bu(r) from
the dissipative scale g to the inertial range. We thus look
for a function f(r/g) such that
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slow transition through the dissipative range is expressed
by the slow relaxation (4) in such a way that, for moderate
Re, the velocity difference (2) is smoother and much less
singular than (1). Such a crossover function has been
successfully introduced by Benzi et aL [11] to extend
the similarity scaling regime of structure functions to
the dissipative range. The function f can be exactly
computed from the Kolmogorov equation

4 d(bu'(r))
(Bu (r)) = — er -+ 6rj5 dr

and one can show that the expression f(r/g) =
Erf

/nb�(r/g)

/2 with b = (4/5) /12 is a very
good approximation of the real solution (the expansion of
the exact solution and the one of this function coincide
up to the second order in r and their maximal relative
discrepancy does not exceed 4% on the whole r/rt
range). The form of f(r/g) chosen here Eq. (4) is only
meant to ensure the scaling constraints (3a) and (3b) and
is sufficiently simple to be easily analytically tractable
[12]. Another approximate analytical expression has
been proposed recently [13]. We insist on the fact that
the precise form for f(r/g) is of little importance for
the present discussion. We further assume that the law
for the velocity differences given by (2) and (4) holds
everywhere in the medium and that (i) deviation in scale
(intermittency) and (ii) deviation in intensity [existence of
a continuous probability density function for Bu(r)] are
irrelevant [14].

Let us come back to the problem of the line, immersed
in a three-dimensional "a la Kolmogorov" turbulence.
The starting point of our analysis consists to represent the
line (of initial length Lp) as a collection of Np(rp) = Lp/rp
segments of size rp jointed end to end (Fig. 3). After a
short time interval 7 that we subsequently specify, each
segment has seen, in the mean, its length increased by

r(r) = rp + Bu(rp) v. (5)

At that time 7, the length of the line is L(r) = Np(rp)r(r)
and is constituted by

rp
N( ) = = —1+f(o/~), , (6)

L(~) I.p & ret )
rp ( r,

' ')
segments of size rp. The above equation displays a central
result: One sees, at the first step of the construction of
the arborescence of the line, where the fractality comes
from. The amplification factor [1 + f(rp/g) (7.et/rp )]
is a decreasing function of the scale rp because of the

factor 1/rp (remember that g ( 1). It is thus all the
more large that rp is small: the small scales reproduce
themselves faster than the large scales [they have a shorter
turnover time rp/Bu(rp)] and thus, after a given lapse
of time, their number is proportionally larger than the
number of large scales (within the trivial 1/rp factor of
course). One might thus expect that the fractal dimension
of the line df (t) defined by

N, (rp) —rp
—df (t)

(7)

—t/7.
7m&

N, (p) = No(.p) 1+ f("/~), ,
rp

(8)

The time-interval v. is the "clock" of this multiplicative
process and corresponds to the smallest physical time
scale of the How, that is to the turnover time of the
smallest scale g of the medium

Bu(g) f(1)e&' (9)

Setting y = rp/g, with rI/L = Re 'i&'+&& and t(L) =
L/ (eL)t, (8) gives

R e 1/(1+ g)

N, (y) =

x 1 + f(y)
—[t/t(L)] f(1)Re[(1—g)i(l+ g)1

f(1)y' '
The dependence N, (y) versus y is a quasi power law at
finite Reynolds number and for t/t(L) smaller than unity

(Fig. 4). The apparent fractal dimension of the line is the

slope at y = 1 (that is rp —g) in log-log coordinates

d log N, (y)
d logy j

and is found to be

= 1 + (I —g) Re~r' &iver'+&)~ (12)
2

'
t(I.)

According to the remark made above, if g is equal to

unity, then df(t) remains equal to 1 at all times t. With

g = 3, (12) yields

df = 1 + 0.088 Re'i .tL (13)

FIG. 3. The first step of the arborescent pair diffusion process,
at a given scale ro.

is an increasing function of time t, thus relating the
faster multiplication of the small scales. Incidently, this

reasoning is based on the fact that g =
3 & 1. Indeed,

for f = 1, the number of scales of size rp contained by
the line increases by a factor independent of rp [Eq. (6)].

Pursuing the arborescence step by step, the number

N, (rp) of segments of size rp in the line at time t is
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100. -

Re 100., t/t (L) 0.3, df 1.264 on a compact support and the fractal ditnension of the line

d&(ttu) is about 3; from (13), an estimation of t~ is

50. -

t(L)
22.7

Re»~ (14)

20. -

10 ~

10. 20.
h

FIG. 4. Continuous line: N(y) versus y given by Eq. (10);
y = ro/rt; Dashed line: Corresponding power law [Eq. (7) and
(13)]N, (y) —y ~/' Re =. 100. t/t(L) = 0.3.

In usual laboratory conditions, the micromixing time
t~, qualitatively measured, for example, by the sudden
appearance of the product of a chemical reaction (so-
called "mixing transition" [16]) is of the order or about
a fraction of the turnover time of the large scales.
According to (14), we have tM/t(L) = 0.7 for Re = 10s.

Since the three-dimensional compactness of the small
scales is usually achieved within time intervals of the order
of t(L), these results might not be affected by the presence
of a confinement altering the large-scale structure of the
flow and may also hold in finite-size systems [17].

The fractal dimension increases linearly with time, the
faster the larger the Reynolds number. The length of the
line is predicted by Eq. (13) to grow exponentially with
time [L,(y) —y' ~f(')] at a rate proportional to Re'/z/t(L)
[15]. Our experimental results fully agree with this law
(Fig. 5). Although it is restricted to short times because
the underlying mechanism deserves an arborescent pair
diffusion process, the validity of (13) is not ruled out by
our experiments which, however, extend up to t/t(L) =
0.4. As soon as the line is sufficiently folded back on
itself with, say, "hair pin" foldings of width r), then the
construction sketched in Fig. 3 is not possible any more.
At this critical time tst (Micromixing time), the small
structures of size g start to fill the three-dimensional space
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FIG. 5. [d (t) —1]/0.088Re / versus t/t(L) ~, Re = 35; ~, .
Re = 33; o, Re = 25; ~, Re = I8. A perfect fit would locate
all the points on the first bissectrice.
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