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We consider Levy flights characterized by the step index f in a quenched isotropic short-range
random force field to one loop order. By means of a dynamic renormalization group analysis, we find
that the dynamic exponent z for f ( 2 locks onto f, independent of dimension and independent of
the presence of weak quenched disorder. The critical dimension for f ( 2 is given by d, = 2f —2.
For d ( d, the disorder is relevant, corresponding to a nontrivial fixed point for the force correlation
function. We also discuss the behavior of the subleading diffusive term.
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There is current interest in the dynamics of fiuctuat-

ing manifolds in quenched random environments [1]. The
simplest case is that of a random walker in a random envi-
ronment, corresponding to a zero-dimensional fluctuating
manifold. This problem has been treated extensively in
the literature and many results are known [2].

In the case of ordinary Brownian motion in a pure
environment without disorder, the statistics of the walk
is given by a Gaussian distribution with a mean square
deviation proportional to the number of steps or the
elapsed time,

(r'(t)) ~ t'I',

where the dynamic exponent z = 2.
There are, however, many interesting processes in

nature that are characterized by anomalous diffusion with

z + 2 due to the statistical properties of the environments

[2]. Examples are found in chaotic systems [3], which
generally lead to superdiffusion with z ( 2; subdiffusion
with z ) 2 is encountered in constrained systems like
fractals [4].

Independent of the spatial dimension d, Brownian
motion traces out a manifold of fractal dimension dF = 2
[5]. In the presence of a quenched disordered force
field in d dimensions, the Brownian walk is unaffected
for d & dF, i.e., for d larger than the critical dimension
d, = dF the walk is transparent and the dynamic exponent
z = 2. Below the critical dimension d, = 2 the long time
character of the walk is changed to subdiffusive behavior
with z ) 2 [6,7]. In d = 1, (rz(t)) ~ [lnt], independent
of the strength of the quenched disorder [8].

Levy flights constitute an interesting generalization of
ordinary Brownian walks. Here the step size is drawn
from a Levy distribution characterized by the step index

f [5]. The distribution has a long-range algebraic tail
corresponding to large but infrequent steps, so-called rare
events. The "built in" superdiffusive characteristics of
Levy flights have been used to model a variety of physical
processes such as self-diffusion in micelle systems, and
transport in heterogeneous rocks [9].

In the present Letter we consider Levy flights in the
presence of a quenched random force field and examine

dr(t)
dt

= F(r(t)) + 7'(t).

Here y is the instantly correlated power law white noise
with the isotropic distribution

characterized by the step index f [10]. For normalizabil-

ity we have introduced a lower cutoff zI —a of the order
of a microscopic length a and chosen f ) 0. For f ) 2
the second moment, (rlz) = f p(g)rIzdd ri, is finite and a
characteristic step size is given by Q(gz). For 1 (f ( 2
the second moment diverges, but the mean step, (g), is fi-
nite. In the interval 0 ( f & 1 the first moment diverges
and even a mean step size is not defined.

The noise g, describing the consecutive Levy steps,
drives the position r of the walker. For the quenched
force field F(r) we assume a Gaussian distribution,

p(F) ~ exp[ —
z f d"rddr'F (r)A I'(r, r') 'FP(r')) with

force correlation function

(F (r)FP(r'))F = 5 ~ (r —r'). (4)

For F(r) = 0 we obtain from P(r, t) = (B(r —r(t)))
the solution of Eq. (2), and averaging according to
Eq. (3), the scaling form [5],

d"k
P(r, t) =

d exp(ik . r —Dik" ltl)
(2n )

(= Itl ~ GI «/ltl~ I.
) (5)

the interplay between the built in superdiffusive behavior
of the Levy flights and the pinning effect of the random
environment, generally leading to subdiffusive behavior.
Details of our analysis will be published elsewhere.

We discuss Levy flights in terms of a Langevin
equation with "power law" noise. In an arbitrary drift
force field F(r), representing the quenched disordered
environment,
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D[ is a diffusion coefficient setting the time scale.
The scaling exponent p depends on f. For f ) 2,

p, = 2 and the scaling function G(x) = exp( —x~); this is
a consequence of the central limit theorem. For f ~ 2,

p = f .In the scaling regime [11] we deduce from
Eq. (5),

distribution (P(r, t))F and the mean square displacement
((r'-(t)))F, we carry out a renormalization group analy-
sis, following the momentum shell integration method

[13,14]. Averaging over the force in the shell e

k, p ~ 1, we thus obtain the "corrected' Fokker-Planck
equation:

(6)

and from Eq. (1) z =
)L(, . We note that the fractal

dimension of a Levy ffight is dF = p, [5].
In the presence of the quenched force field we recast the

problem given by Eq. (2) in terms of the Fokker-Planck
equation following from Eq. (5):

aP(r, t) —V'[F(r) P(r, t)]
Bt

+ D&'(7"P(r, t) + D&V'P(r, t), (7)

including the ordinary diffusion term, D2V P, originating
from the low g part of the distribution p(g). The
"fractional" gradient operator V~ is the Fourier transform
of —k& and is a spatially nonlocal integral operator
reflecting the long-range steps.

There are a variety of techniques available in order to
treat the random Fokker-Planck equation (7). Applying
the Martin-Siggia-Rose formalism in functional form [12]
and using either the replica method [2] or an explicit
casual time dependence [6], one can average over the

quenched force field and construct an effective field
theory. A more direct method amounts to an expansion
of the Fokker-Planck equation (7) in powers of the force
field and an average over products of F(r) according to
Eqs. (4) [13].

Defining P(k, cu) = fd4r dtexp(isn't —ik r)P X

(r, t)8(t), where 8(t) is the step function, we obtain,
introducing the dimensionless coupling strength A for the
vertex,

( ice + D—)k" + D2k )P(k, cu)

pPo(k) ikk 4F(k p)P(p, ru) .
(2m )"

[—i(u + D, k" + (D. + 6D2)k']P(k, cu)

Po(k) —i(A + 8A)k 4F(k —p)P(p, a)), (9)p
(2vr)

and the force correlation function

(F"(k)F~(p)) =- (5 + 6b, )6"~(2m)'6(k + p) (10)

for 0 ~ k, p & e '. Note that there is no correction
to the leading Levy term. For small values of the
scale parameter l the corrections BD2, 6A, and 66 are
proportional to I. From the diagrammatic contributions
given in Refs. [6,13], evaluated in the Levy case to one
loop order, we obtain

6D = A', D((d —p) + D2(d —2)
A Al,

(D( + D. )

6W = -C'
(D, + D2)

(12)

A-'52
65 = —B'

(D( + D2)
(13)

where A', B', and C' are geometric factors. In order to de-
rive the "renormalized" Fokker-Planck equation, we intro-
duce scaled quantities k' = ke', p' = pe', cu' = ~e~",
P'(k', cu') = P(k, cu)e ', and F'(k') = F(k)e t' '~ such
that 0 & k', p' ( 1.

From the renormalized Fokker-Planck equation and
force correlation function, adjusting P(l) so that A = 1.
setting u(1) = foz(l')dl', choosing z(l) = ((t, in order to
fix D&(l) = D~, we read off the renormalization group
equations for D2 and 5,

The force field is averaged according to Eq. (4), i.e.,
(F (k)Fi (p))F = 5 t'(k) (2m) B(k + p) for all pairwise
force contractions; Po(k) = P(k, t = 0) is the initial dis-
tribution. %e consider the case of isotropic zero-range
force correlations, i.e., b, t'(k) = b, 6 t; the general case
has been discussed in Refs. [2,13,15]. We introduce a
microscopic UV cutoff and assume 0 ~ k, p ( 1. Iterat-
ing Eq. (8) and identifying self-energy, vertex, and force
correlation corrections to first order in 5, we find diver-
gent contributions to the subleading term Dqk2 for d ~ p,
and to the vertex A for d ( 2p, —2. In order to dis-
entangle the breakdown of primitive perturbation theory
and deduce the scaling properties of the force averaged
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da, D((d —~) + D2(d —2)= (p, —2)D2+A
dl (D + D2)'

dk = (2p, —d —2) b, —8
dI (D, + D,)'

(14)

(15)

Here A = (I/2d)S4/(2m. )4, 8 = (3/d —1)S4/(2n. )4, and

S4 = 2vr4t2/I (d/2) the surface area of a d-dimensional
sphere.

Proceeding with the discussion of Eqs. (14) and (15),
we note that for p, & 1 + d/2 Eqs. (14) and (15) have
the trivial fixed points D2 = 0 and 5* = 0, indicating that
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(i) the subleading term, D2k2, scales to zero compared
with the leading Levy term and (ii) the quenched disor-
der, characterized by 5, is irrelevant .The long-range
Levy steps predominate and control the scaling behav-
ior. In a plot of D2(l) versus 5(l) the size of the linear
scaling regime, i.e., the region where the trajectories flow
to the fixed point with constant slope, depends on p, and
becomes largest for p, = d, precisely the case where per-
turbation theory begins to yield a divergent contribution to
D2. For 1 + d/2 ( p, ( 2 nontrivial fixed points emerge
for D2 and 6,

Di(d —/L)(2p —d —2)
2 —p, + (A/B)(2p— ,d —2)(2 —d)

(16)

b,
' = (1/B)(2~u, —d —2)(Di + D2) . (17)

(P(k, cu, b))p = k "L(k/~' "), (18)

where L is a scaling function. From Eq. (18) follows
directly (see [11])

((r'(r))&p " t' " = r' ' (19)

For Levy flights in random quenched environment we
have shown that the dynamic exponent z locks onto the
scaling index p„, depending on the Levy step index f,
independent of the presence of weak quenched disorder.

The fixed point D2 indicates that the subleading diffusive
term D2k2 now yields a contribution compared to the

Levy term Di k". The fixed point 6' shows that for d less
than the critical dimension d, = 2p, —2 the quenched
disorder becomes relevant. The fixed point value of the
diffusion coefficient, D2, is negative since the pinning
environment tends to reduce the ordinary diffusion from
D2 = 0 for p, ( 1 + d/2. We also note that unlike the
case of Brownian motion the critical dimension d, =
2p, —2 is less than the fractal dimension dp = p, . For

2 it follows from Eq. (16) that D2 Di of that the-
Levy term Dikl" precisely cancels with the diffusive term
D2k2 in the Fokker-Planck equation (8); this is consistent
with the fact that there is no correction to first loop order
or more precisely to first order in d, d in the Brownian
case [6).

In order to derive the scaling properties of the force
averaged distribution (P(k, cu))p and the mean square
displacement ((r2(t)))p, we use the methods discussed
in Refs. [13,14]. From the derivation of the renormali-
zation group equations we infer the scaling relation
(P(k, ru, h))p = e ' (P(ke', cue ', 5(l)))p. In the vicin-
ity of either fixed point we have, setting u(l) ~ p, l,
(P(k, cu, 4))p = e"'(P(ke', cuel", 6'))p. Choosing ke'—
1 we obtain the scaling form

The long-range superdiffusive behavior characteristic of
Levy flights enables the walker to escape the inhomoge-
neous pinning environment, and the long time behavior is
the same as in the pure case. We have also identified a
critical dimension d, = 2p, —2, depending on the scal-
ing exponent p, . For d ( d, the weak disorder becomes
relevant as shown by the emergence of a nontrivial fixed
point.

Bouchaud et al. [16] have given a heuristic argument
yielding the critical dimension d, = p, in the Levy case.
This result is at variance with the critical dimension d, =
2p, —2 given here based on a renormalization group
analysis. Note, however, that perturbation theory yields a
divergent contribution to the subleading diffusive term for
d =

iM, . We have not entirely appreciated the discrepancy
between Bouchaud's argument and the present analysis.
It clearly would be of interest to construe a qualitative
heuristic argument for the critical dimension d, = 2p, —
2 given here and the insensitivity of the dynamic exponent
z = p, to the weak quenched disorder.

The present analysis opens up several avenues to pursue
such as the interplay between the temporal and spatial
features of Levy flights in quenched environments and the
role played by the range and vector nature of the random
force field. These problems will be dealt with in a future
publication.
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