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Physical Tests for Random Numbers in Simulations
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We propose three physical tests to measure correlations in random numbers used in Monte Carlo
simulations. The first test uses autocorrelation times of certain physical quantities when the Ising
model is simulated with the Wolff algorithm. The second test is based on random walks and the third
on blocks of n successive numbers. We apply the tests to show that recent errors in high precision
Ising simulations using generalized feedback shift register algorithms are due to short range correlations
in random number sequences.

PACS numbers: 02.70.Lq, 05.40.+j, 05.50.+q, 75.40.Mg

The Monte Carlo (MC) simulation method is a standard
technique in physical sciences [1]. The key ingredient
in its successful application lies in the quality of random
numbers used, which are usually produced by determin-
istic pseudorandom number (PRN) generator algorithms.
Several tests for PRN generators have been suggested [2—
4] and conducted [3—6] to test PRN generators, but none
of them can prove that a given generator is reliable in
all applications. Sometimes the inevitable correlations
in their output can lead to erroneous results, as recently
demonstrated in high-precision MC simulations for some
commonly used generators combined with special simula-
tion algorithms [7—11].

In this Letter, our purpose is to introduce physical tests
which allow more precise characterizations of correlations
which may cause problems in simulations. These tests are
then used to demonstrate that for some generators there
exist nontrivial local correlations which are present in
rather short subsequences of random numbers and cannot
always be detected by conventional test methods [2,3,6].
We start by generalizing the Ising model simulations of
Refs. [7,10,11] to show that the local correlations lead
to deviations in the cluster formation process of the
Wolff algorithm [12] which explains the errors observed
in Refs. [7,10,11]. As a test of random numbers, we
show that integrated autocorrelation times [13]of certain

physical quantities are particularly sensitive measures of
local correlations. We then introduce random walk and
n-block tests and show how these tests can be used
to precisely measure the length of correlations in PRN
sequences.

The PRN generators tested in this work include
generalized feedback shift register (GFSR) algo-
rithms [14], which are of the form x„=x„„Sx„~,
where is the bitwise exclusive QR operator. They
are denoted by Rp, recommended values for p and

q (p ) q) can be found, e.g., in Ref. [15]. Other
generators include a linear congruential generator
x„= (16807 X x„ i) mod(23' —1) [16] known as GGL

(coNG in Ref. [7]),RAN3 [17],which is a lagged Fibonacci
generator x„= (x„55 —x„2q) mod2 ', and a combina-
tion generator RANMAR [18]. The GFSR generators were
initialized with 32-bit integers produced by GGL. Other
initialization methods including the one in Ref. [19]were
also checked, but the results were unaffected.

In Refs. [7,10,11] problems with GFSR generators
arose when the two-dimensional Ising model was simu-
lated on a square lattice with the Wolff algorithm [12].
We carried out analogous simulations for an Ising model
of linear size L = 16 at K, =

2 ln(1 + ~2), for a variety
of generators listed in Table I. Our implementation of
the single cluster search algorithm follows Ref. [20]. We
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TABLE I. Results of simulations for the Ising model at criticality with the %olff algorithm. The number of samples is W == 10',
and k is the decimation parameter. The errors shown correspond to a. [13]. The most erroneous results are in boldface. See text
for details.

Generator

R31

R250

R521

R1279
R2281
R4423

R9689
R19937
R44497
RAN3

GGL
RANMAR

q

3
103
103
168
418

1029
2098
4187
9842

21034

1.46774(7)
1.45509(7)
1.45302(7)
1.45379(7)
1.45312(7)
1.45311(7)
1.45303(7)
1.45313(7)
1.45294(7)
1.45292(7)
1.45254(7)
1.45309(7)
1.45303(7)

(X&

0.564(2)
0.548(2)
0.545(2)
0.546{2)
0.545(2)
0.545(2)
0.545(2)
0.546(2)
0.545(2)
0.545(2)
0.545(2)
0.545(2)
0.545(2)

(c)

0.5664(3)
0.5474(2)
0.5452(2)
0.5461(2)
0.5454(2)
0.5456(2)
0.5454(2)
0.5455(2)
0.5452(2)
0.5452(2)
0.5446(2)
0.5454(2)
0.5452(2)

1.233(4)
1.333(4)
1.446(6)
1.384(5)
1.426{5)
1.439(5)
1.441(5)
1.444(5)
1.434(5)
1.434(5)
1.447(5)
1.436(5)
1.443(5)

1.058(3)
1.143(4)
1 226(5)
1.182(5)
1.215(4)
1.226(5)
1.226(5)
1.229{5)
1.220(5)
1.219(5)
1.231{5)
1.221(5)
1.227(5)

0.507(2)
0.589(4)
(3.628{5}
0.604(4)
0.622(3}
0.627{5)
0.624(4)
0.625(4)
0.624(4)
0.622(2)
0.630{3)
0.622(4)
0.624(4)

calculated the energy E, the magnetic susceptibility g,
and the (normalized) size of the flipped clusters c. We
then calculated the corresponding integrated autocorrela
tion times rE, r~, and r„by first calculating the autocor-
relation functions,

C(t) = (~(to)~(to + t)) —(~(to))'
(~(to)') —(~(to)')

and then following the procedure in Ref. [13].
A summary of the results in Table I shows that based

on this test, the generators can be classified into two
categories. For the energy (E), for example, deviations
from the exact result of (E) = 1.45312 [21] for R31, R250,

R521, aIld RAN3 are much larger than 3', where 0 is the
standard deviation [13]. In particular, (c) reveals that in
the erroneous cases the average Pipped cluster size is
biased. Most striking, however, is the behavior of the
integrated autocorrelation times. For generators, which
show no significant deviations in (E), (j), or (c), results
for the ~'s agree well with each other. However, for
R31 and R250 the integrated autocorrelation times show
errors of about 8%. We thus propose these quantities
as particularly sensitive measures of correlations in PRN
sequences.

To compare with Refs. [7,10] we also used the auto-
correlation time test to study the decimation of the out-

put of R250, i.e., we took every kth number of the PRN
sequence. For k = [3,5, 6, 7, 9, 10, 11, 12, 24, 28) the cor-
relations vanish in agreement with k = S in Ref. [7] and
k = 3, 5 in Ref. [10]. On the other hand, for k = 2 with
m = {0,1, 2, 3, 4, 5, 6, 7, 8) the sequences fail. These find-

ings agree with the theoretical result of Golomb [22],
who showed that the decimation of a maximum-length
GFSR sequence by powers of 2 results in equivalent
sequences.

The errors in the average cluster sizes for some
of the GFSR generators suggests that there must be

TABLE II. Results of the random walk test with N = 10'
samples. See text for details.

Generator

R31
R250
R521
RAN3

R250
R521
R1279
R4423
RAN3

GGL
RANMAR

1

1,2,64
1,2,64

3
3

1,2,3,64
1

2,3

3
103
168

103
168
418

2098

Result

FAIL

FAIL
FAIL
PASS
PASS
PASS
PASS
PASS
PASS
PASS

correlations present within the 6(L-'} successive PRN's
which are used in the single cluster formation of the
Wolff algorithm. To quantify the range of correlations
we propose the following random walk and n-block
tests.

In the random walk test [23], we consider random
walks on a plane which is divided into four equal blocks,
each of which has an equal probability to contain the ran-
dom walker after a walk of length n. The test is per-
formed N times, and the number of occurrences in each of
the four blocks is compared to the expected value of N/4,
using a g' test with three degrees of freedom. The gen-
erator fails if the g2 value exceeds 7.815 in at least two
out of three independent runs. This should occur with a
probability of only about 3/400.

Results for a group of generators with this test are pre-
sented in Table II with n = 1000. They are in agreement
with the autocorrelation time test. No correlations for ei-
ther GGL 01 RANMAR wclc obsci vcd. R250 and R521 pass the
test with k = 3, but fail with values k = (1,2, 26], whereas
R1279 passes with all k tested. The failure of RAN3 with
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k = 1 is consistent with previous test results [4,6]. It is
notable that all the failures in this test were very clear,
since even the smallest g2 values exceeded 40. However,
RAN3 passed the test when every second or third number
was used.

The main difference between the failing generators R250

and Rs2l (with k = 1) and the successful ones R1279 and
R4423 lies in the lag parameter p which is less than n for the
former and larger than n for the latter. We studied this for
various values of p with the random walk test by locating
the approximate value n„above which the generators
fail. The test was performed for R31, R250, R521, and R1279

with N = 10 samples. The results for n, were 32 ~ 1,
280 ~ 5, 590 ~ 5, and 1515 +. 5, respectively, where the
error estimate is the largest distance between samples close
to n, . An example of the g2 values is given in Fig. 1.
These results demonstrate that the correlations are local,
in the sense that they have a range very close to p.

In order to further quantify the nature of correlations
we present the n block -test [24]. In it we take a sequence
(x&, x2, . . . , x„}of uniformly distributed random numbers
0 ~ x; ( 1, whose average x is calculated. If x ~ 1/2,
we choose y; = 1; otherwise y; = 0. This is repeated N
times. We then perform a g2 test on variables y; with one
degree of freedom. Each test is repeated 3 times, and the
generator fails the test with fixed n if at least two out of
three g2 values exceed 3.841, which should occur with a
probability of about 3/400.

In cases of GGL, RANMAR, and RAN3, we observed no
correlations up to n = 10 for N = 10 . For R31, R250,

and R521 we performed an iterative study by varying n

When N = 10 samples were taken, the resulting corre-
lation lengths n, were 32 +. 1, 267 ~ 5, and 555 ~ 5, re-

spectively. With better statistics N = 10, we observed
no change for R31, whereas the estimate for R521 reduced
to 525 ~ 1, and that of R250 to 251 ~ 1. The latter value
was confirmed with N = 10 also. Typical values of g
for R250 are shown in Fig. 2, where a sharp onset of cor-
relations at n, is visible.

The results of our Ising simulations show that the origin
of the errors observed here and in Refs. [7,10,11] must
be due to the appearance of local correlations in the
probability distribution. It is important to realize that
in our Ising simulations it is the single cluster search
[20] in the Wolff algorithm, where 8(L2) successive
PRN's are used in cluster formation that makes the
system especially sensitive to correlations; if, e.g. , GFSR
generators with p » L2 (q = p/2) are used, the results
improve considerably. Furthermore, the random walk and
n-block tests are powerful enough to accurately pinpoint
the range of correlations. For the GFSR generators, these
two tests reveal that the dominant correlations appear very
close to p, which supports the idea that these are triple
correlations as suggested in Refs. [9,25,26].

In conclusion, we have presented three simple physi-
cal tests for detecting correlations in PRN sequences. We
have demonstrated the quality of these tests by being able
to unravel correlations in GFSR generators that have re-
cently been shown to produce erroneous results in Monte
Carlo simulations. In particular, we have shown that the
errors in Ising simulations lie in local correlations present
in the cluster formation process of the Wolff algorithm.
For GFSR generators, the dominant correlations are of
triple type as revealed by the random walk and n-block
tests. This supports the idea of Grassberger for errors ob-
served in the case of another depth-first algorithm [9]. It

30 20

0
10

26 28 30 32 34

I1

1

t' ~

20

I
I

/g
Ig

Ip
4

r

200 220 240 260 280 300 249 250 251 252 253 254

FIG. l. The g2 values for R31 (inner figure) and R250 in
the random walk test as a function of walk length n. Three
independent runs in both cases are denoted by different
symbols. The horizontal lines denote y2 = 7.815.

FIG. 2. The g values for R250 in the n-block test. Curves
with circles and squares correspond to N = 10' and N = 10
samples, respectively. In both cases three independent runs
have been performed. The horizontal line denotes g = 3.841.
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is remarkable that these correlations cannot be seen in ei-
ther careful statistical [6] of bit level tests [4].

Finally, we would also like to note that we have
preliminary results for applying the tests presented
here for GFSR generators with four "taps" of the form
xn xn —96s9 8 xg —47] 6 xg —3]4 ta xp —)57 [27], which
is basically a 3 decimation (k = 3) of the generator
&n &n —9689 ta xn —47/ [26]. For these generators correla-
tions appear to be very weak as expected, but for smaller
lags errors can again be found [28].
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