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Investigation of the Field Induced Antiferromagnetic Phase Transition in the
Frustrated Magnet: Gadolinium Gallium Garnet
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The geometrically frustrated magnet gadolinium gallium garnet (GGG) has a unique low temperature
((0.38 K) antiferromagnetic phase which exists only in finite fields (H —1 T). We have measured

the specific heat and magnetic susceptibility of GGG to obtain the first accurate map of the low

temperature phase diagram. A ground state magnetic structure in this field regime has been determined

by simulations including both the exchange and dipole interactions. %e find a critical exponent n ~ ()

at the ordering transition, consistent with a transition in a random magnetic environment.

PACS numbers: 75.30.Kz, 75.40.Gb

There has been much recent interest in magnetic materi-
als which exhibit strong antiferromagnetic tendencies but
which are prevented from ordering at temperatures near
the exchange energy by uniform geometric frustration of
the spins [1]. One such material is Gd3Ga50, 2 (gadolin-
ium gallium garnet or GGG), in which the magnetic Gd
ions are on two interpenetrating corner-sharing triangu-
lar sublattices within the garnet structure, and the ex-
changes are almost purely antiferromagnetic (AFM) with

Ow„,, ——2 K [2,3]. GGG has long been used in mag-
netic bubble memories and can thus be obtained in single
crystals of exceptional purity and very low disorder. The
availability of high quality GGG samples and the depth to
which the high temperature (&0.5 K) properties are un-

derstood make it a model system for the study of frus-

trated magnets.
Because of the high degree of frustration, long-range

AFM order is suppressed in GGG to T (( Ow„s, and

appears to be completely suppressed in low magnetic
fields [4—6]. A brief report [5] of magnetic susceptibility

(g) measurements at low temperatures indicated an AFM
ordering transition as the external magnetic field was
increased to -1 T and a return to paramagnetism at a
somewhat higher field. Specific heat (C) and thermal

expansion measurements [7] confirmed the existence of
a transition, although the phase boundaries varied widely
between measurements. Neutron scattering experiments
have not been attempted, due to the high absorption of
neutrons by

"Gd nuclei.
In this Letter we present new measurements of C

and y which allow a detailed study of this unique low

temperature field-induced antiferromagnetism, including
the first accurate map of the phase diagram for GGG.
The ground state magnetic structures in both the AFM
and paramagnetic (PM) phases are determined from
simulations which include both the AFM exchanges and

the considerable dipole interaction. Measurements of the
critical behavior of both C and g at the ordering transition

yield a critical exponent n ( 0, which is consistent with

a transition in a random magnetic environment.

The magnetic Gd ions in GGG are on tv o equivalent
sublattices of corner sharing equilateral triangles [8]. The
Gd spins (5 = 7/2) are isotropic, although there is a small

single ion anisotropy in the gadolinium garnets of less
than 0.04 K [9]. This isotropy leads to the high degree of
frustration in GGG which prevents ordering at low fields

of the sort observed in isomorphic magnetic garnets such
as Dy 3Al &0,z (DAG). The nearest neighbor dipole energy
is -0.7 K. and the nearest neighbor exchange energy is

JNNS(S + 1'1 —= 1.5 K. Further neighbor exchanges are

known to be an order of magnitude or more smaller from

previous high temperature measurements [2].
We have measured y and C on two samples of GGG

cut from the same single crystal grown by the Czochralski
method. Both samples had a needlelike shape (with

aspect ratios of -5 and -20, respectively), and the

needle axis and the external magnetic held were along
the [100] direction (the qualitative features of the phase
diagram seem to be independent of field orientation [5,7]).
The level of crystalline imperfections in GGG crystals
grown by this technique is extremely small [4,10,11]; the

only significant defect is an off stoichiometry of --1%
additional Gd ions sitting on Ga sites which is inherent in

the crystal growth process. The measurement techniques
for both y and C have been described previously [4].

In Fig. l we display typical measurements of p as

a function of field. At high temperature, y decreases
monotonically with 0 as the Zeeman energy suppresses

spin fiuctuations [6]. As the sample is cooled, a broad

peak appears in g(H) corresponding to the quenching
of AFM short range order (SRO) by the field. Below
-0.38 K, two increasingly sharp peaks appear on either
side of this feature, corresponding to the transitions

to and from long range order (LRO) as the field is

increased. Both the LRO and SRO peaks are shown

in Fig. 2; note that the LRO peaks in Fig. 1 become
sharper at lower temperature due to the isotherm being
more normal to the phase boundary. The inset to Fig. l

shows an enlargement of g(H) in the ordered phase at low

temperatures: In addition to the two LRO peaks there is a
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FIG. 1. The magnetic susceptibility of GGG at several tem-
peratures. Inset shows an enlargement at T = 0.14 K, note the
broad peak in the center of the ordered phase.
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broad bump in the center of the phase, a previously unseen

feature.
In Fig. 3, we show measurements of C as a function

of temperature at several fields. A broad peak at low
fields and high temperatures corresponds to the formation
of AFIM SRO which is quenched at high fields. Again
the sharpness of the LRO peak depends on the angle at
which the data isochore intersects the phase boundary.
The entropy obtained by integrating C/T across the LRO
peak is only a small fraction of the total magnetic entropy.
This indicates that much of the ordering takes place at
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higher temperatures which is consistent with the observed
SRO peaks.

The phase boundary of the AFM phase given by the
LRO peaks in Fig. 3 was not obtained directly from
the peak positions, since the relevant field is not the

external magnetic field H,„,but the internal field given

by H; = H, —4mNM, where M is the magnetization
(obtained by integrating g) and N is the demagnetization
factor determined by the sample geometry [12]. The
correction was not made in the previous preliminary

[5,7] studies of the phase diagram, since the values of
M were not available. This accounts for the significant
discrepancies between their phase diagrams and also for
their phase boundaries being at higher fields than those

given here. For our needlelike samples, N was easily
calculable [12] and 4m NM was typically -50 mT for the

g sample and -5 mT for the C satnple. The excellent
agreement between the two measurements indicates that

we are measuring the true phase boundary.
The AFM phase in GGG exists when the Zeeman

energies associated with the external field are of the same
order as the ATM exchange energy. A field of that

magnitude alleviates the local geometric frustration but
does not force the magnetization to saturate. While some
other materials [13]have similar phase diagrams, they are
due to a field-induced change from an nonmagnetic singlet
to a magnetic doublet state which is a single-ion effect
rather than the inherently many-body frustration-induced
behavior in GGG. One particularly interesting feature of
the GGG phase boundary is the slight upward curvature of
the low field boundary as T 0 which is also seen in the
unpublished data of Ref. [5]. This temperature-reentrant
behavior indicates that the AFM ordered phase has more

entropy than the low temperature PM phase in that region,
an unusual phenomenon that also occurs on the phase
boundary between solid and liquid helium. This suggests
that the "disordered" paramagnetic phase in that region
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FIG. 2. The magnetic phase diagram of GGG. The long range
order peaks which define the antiferromagnetic (AFM) phase
boundary and the short range order peaks in the paramagnetic
(PM) phase are shown. The line of maxima in g vs T
corresponding to the spin-glass-like freezing transition is also
shown.

0
0.2

I

0.4
I

0.6
T (K)

i

0.8 1.0

FIG. 3. The specific heat of GGG at several fields. The inset
shows the critical behavior at 1.0 T.
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actually possesses a high degree of magnetic order, even
though there is no sharp ordering feature in the measured
quantities.

To further understand magnetic ordering in GGG,
we have studied a simple model consisting of classical
Heisenberg spins at each Gd site coupled with nearest-

neighbor isotropic antiferromagnetic exchange interac-
tions and dipolar interactions to the third nearest neighbor.
The nearest-neighbor exchange is assumed to be twice the

strength of the nearest-neighbor dipolar interactions. We
examined ground states as a function of field and also
finite temperature behavior in Monte Carlo simulations.
We have determined the PM spin configuration in the high
temperature and the high field regimes, and we also have

found a magnetically ordered phase with approximately
the same boundary as seen experimentally.

The nature of the ordering found in this model is
illustrated in Fig. 4, which shows the 24 Gd sites in

a cubic unit cell of GGG projected along the z axis.
The structure does not have inversion symmetry but is
invariant under 180' rotations about certain symmetry
axes. The sites at the edges and at the center of Fig. 4
("A" sites) are on twofold axes that run parallel to the:
axis, so when the applied field is also along the z axis (as
in our experiment) these sites are of higher symmetry than

the others ("B"sites).
In the PM phase at fields above the upper critical

field or at temperatures above the transition, the local
magnetization at the A sites points along the field direction

(the z axis). At the B sites, due to the dipolar interactions

and the lower symmetry, the local magnetizations in

the PM phase have components along either the x
or Y axis as shown by the dashed arrows in Fig. 4.
The vanishing of one Cartesian component of the local

FIG. 4. The magnetic structure of GGG in the AFM and PM
phases as described in the text. The projection of one unit
cell along a [100] direction (z axis pointing out of the page) is
shown with the heights of each site along the z agis shown in

units of a/g, where a is the unit cell size. The arrows indicate
the x-y components of the magnetizations. Dashed arrows are
in the PM phase and solid are in the AFM phase.

magnetization at each of the 8 sites when a field is

applied along the z axis creates an Ising-like symmetry
that is broken in the ordered phase. Calculations of
y(H) at temperatures above the ordering temperature

reproduce the experimentally observed broad peak at
fields corresponding to -1 T. In the model this peak is

due to the A spins Gipping to align parallel to 8 from
their low field state of being antiparallel to H (due to
AFM exchange with the more numerous B spins). Our

calculations did not confirm that the above PM state
describes GGG near T = 0 at fields belo~ the lo~er
critical field since there the model has many metastable
states and long equilibration times. Considering the

unusual upward curvature of the low field phase boundary,
it ~ould not be surprising if there were some more exotic
magnetic behavior in that regime.

In the model's ordered AFM phase, the local magneti-

zations at the A sites have components in the x-y plane
as well as along the z axis (field direction), and the local
magnetizations at the B sites rotate away from the x-z or
y-- planes in which they point in the PM phase. The or-

dering is most simply described in terms of an Ising-like
variable o. which corresponds to the direction (clockwise
or counterclockwise) the x-y components (m;) of the lo-

cal magnetizations point around each nearest-neighbor tri-

angle when viewed down the - axis [rr = sgn(m; x r;),
where i is any spin in the triangle and r; is the vector from

the center of the triangle to that spin's lattice site projected
onto the x-y plane]. These components are shown by the

solid arrows in Fig. 4, with the two sublattices denoted

by bold and fine symbols (note that each spin's nearest

neighbors are all on the same sublattice). Triangles that

share a corner always have opposite o., thus there are two

degenerate states for each sublattice and four equivalent

ordered states for the system, one of which is shown in

the figure.
The phase boundary we obtain from the simulations

is uniformly -30% outside the experimental boundary

in both T and 0 which is consistent with quantum

fluctuations or disorder in the real sample suppressing
ordering. The lower critical field is least precisely located,
due to the problems equilibrating the system in that

regime as mentioned above. However, at low fields,

we have found lower energy states than the ordered

state of Fig. 4, showing that the lower critical field

for that phase is indeed nonzero. Although we could

not numerically reproduce the broad bump in g(H)
experimentally observed in the AFM phase, this is likely

associated with the polarization of the A sites which

also creates the broad SRO feature in g(H) at high

temperatures.
The high resolution with which we measured C and y

allowed us to analyze the critical behavior at the LRO
transition, which is presumably affected by the large roles

frustration and dipole forces play in shaping the phase

boundary. We expect the same critical behavior in C and
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FIG. 5. The critical behavior in C at the boundary of the AFM
phase at H = 1.0 T. Note the sensitivity of u to T, .

g since both quantities are second derivatives of the free

energy with respect to the intensive quantity (temperature
or field) which is being varied as the phase boundary is

being crossed. In fact, the qualitative shapes of the LRO
peaks in C and g are quite similar in that both are much

steeper on the PM sides of the transition. The rounding of
the peaks (-2 mK for C and typically -10 mT for g) is

consistent with demagnetization effects in the respective
samples.

For the purposes of analysis, we assumed that the

critical behavior at the transition could be described by
C- = B + A-t where ~ indicates the behavior above
and below T„Bis the background specific heat which to
lowest order is constant near T„and t —= iT —T, i/T, is

the reduced temperature. One can subtract the expressions
above and below T, from each other to obtain b, C =
iC+ —C i

= iA+ —A it which, when plotted vs t on

a logarithmic scale, gives the critical exponent u. Typical
data are shown in Fig. 5. Notice that the critical regime
over which we obtain a good linear fit is approximately a
decade in r. Unfortunately, u obtained by this method is

very strongly dependent on the assumed value of T„and
the few mK of rounding in our data prevents the precise
determination of u. We obtain a = —0.7 +. 0.35 using

only values of T, which yield a good linear fit to the

data over a decade in reduced temperature. By varying

T, further, however, we see linear behavior in b, C over at
least a half decade with —1.2 ( n & —0.1. Although the

data in g are limited by more rounding and a more limited

range of critical behavior, they also yield a & 0.
Models of critical behavior in which one expects e & 0

include Heisenberg systems (such as Fe and Ni) and

Ising systems with disorder (random exchanges or fields)
[14]. The former is an unlikely model for GGG despite
the isotropy of the individual Gd spins, since there is
a great deal of anisotropy in the environment from the

dipole interactions (although one similarity is the long
range nature of both the RKKY interaction in Fe and Ni
and the dipole interaction in GGG). Despite the highly

site-ordered nature of the lattice, the transition might be
described as Ising spins in a random environment since
our simulations do predict an Ising-like synunetry in the

PM phase. The randomness might be explained by the
-1% excess Gd ions which should be randomly placed
and should therefore produce random exchange disorder
as well as random fields due to their polarization by the

applied field. Since we observed critical behavior in C
from within -10 ' —10 of T„the correlation volume
of the ordered state should include -10 or more nearest
neighbor spacings (assuming a typical critical exponent

v ~ 3) or at least -103 spins. Thus all the spins should

be correlated with the relatively sparse excess Gd ions.
In conclusion, we have made the first detailed study

of the low temperature properties of GGG in a magnetic
field. In addition to mapping the phase diagram, we have

proposed a model for the magnetic structure and analyzed
the critical behavior at the AFM ordering transition.
Further experimental and theoretical efforts are certainly
warranted in this model magnetic system with its unique
combination of strong geometric frustration and dipolar
interactions.
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