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Stephen W. Pierson*

Code 6877, Naval Research Laboratory, Washington, DC 20375-5347
(Received 1 April 1994)

The critical behavior of vortices interacting in zero field in a system of weakly coupled layers is
studied. A mathematically rigorous, real-space renormalization group study is carried out and the
recursion relations derived. A new term is found which corresponds to the effect of vortex fluctuations
on the interlayer coupling and which tends to decouple the layers just above the transition, a result

which is consistent with Monte Carlo studies.

The effect of vortices in neighboring layers on the

critical behavior is also studied. We find that it reinforces slightly the upward shift of the transition
temperature with the interlayer coupling, but is otherwise minimal over most of the temperature range.

PACS numbers: 74.60.—w, 64.60.Cn, 74.25.Ha, 74.80.Dm

The Kosterlitz-Thouless-Berezinskii (KTB) [1-3] tran-
sition of vortices in two-dimensional (2D) systems has
many interesting and unique features. The correlation
length has an exponential divergence and the interaction
strength has a discontinuous jump at the transition tem-
perature. The critical behavior of vortices in layered
systems, such as the high-temperature superconductors
(HTSC’s), is proving to be equally intriguing, although
not yet understood. Experiments have verified signatures
of KTB critical behavior in electrical transport measure-
ments [4], but theoretical and numerical studies are in dis-
agreement about the ultimate critical behavior above the
transition temperature.

Theoretical studies [S—7] indicate that the critical
behavior is three dimensional (3D) near the transition
where the correlation length diverges. Monte Carlo
studies [8], on the other hand, point toward a decoupling
of the layers just above the transition. The authors of
the latter studies reach their conclusions by determining
a temperature at which various quantities become 2D
and then compare that temperature with the transition
temperature 7., which is derived by another means. The
results of these studies have not been reconciled with
those of analytical studies.

Recently, a model for vortices confined to single layer
which is Josephson coupled to a semi-infinite slab was
considered [9]. Because of the Josephson coupling in this
model, the vortices have the same intralayer interaction
as those of layered systems. It was found through a
phenomenological renormalization group study that the
coupling to the slab renormalizes to zero above and very
close to the transition temperature. This study points
the way toward reconciling analytical and Monte Carlo
studies in the layered systems.

In this Letter [10], we consider vortices interacting in
a layered system. The interactions are approximated to
those of vortices in layered superconductors. We do a
mathematically rigorous, real-space renormalization group
(RG) study of the system in a manner very similar to
that [1] done on the 2D Coulomb gas. The recursion
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relations are derived and analyzed. We find a new
term which we identify as being due to the effect of
vortex fluctuations on the interlayer coupling, a lowest-
order effect not considered in previous studies on layered
systems [5,7]. The new term is very important: It causes
the layers to become decoupled at a temperature very
close to the transition, behavior which is consistent with
the Monte Carlo studies. The results are interpreted in the
context of the HTSC’s.

We begin with an explanation of our model (a
schematic diagram of which is shown in the inset of
Fig. 1). We consider thermally induced vortices in-
teracting in zero field in a system of weakly coupled
layers stacked on top of each other with separation d.
The vortices can have a positive vorticity or a negative
vorticity, but the total vorticity of each layer and of the
system in general must be zero. The “up” and “down”
vortices will be represented by positive and negative
charges. The grand partition function for our layered
neutral gas of charges is
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where 2N is the total number of particles, N of which have
a positive (negative) charge p; = +p (p; = —p), and
(r;, [;) are the coordinates of the ith charge, corresponding
to the in-plane coordinates r and the Ith layer. B~' =
kpT, where T is the temperature and kp is the Boltzmann
constant. V(R,!) is the interaction between two vortices
expressed in the units p?. The integrals are over an area
D;, which is all of the layer /;, except for disks of radius
7 around the charges j < i, which lie in the same layer.
y = exp(Bu)/7? is the fugacity, where u = —E. and E.
is the “core energy.”
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FIG. 1. The RG flows
ous initial points (x; = —0.7,
0.6,0.65,0.7,0.73,0.75, and 0.8). Note that A is a relevant
parameter for T < 7. and irrelevant for T > T.. The RG
curve for y; = 0.73 (represented by plus signs) has a starting
point extremely close to the critical surface and its ultimate
direction cannot be determined by our recursion relations. (See
discussion in text.) Inset: A scheme of our model representing
vortices moving about in each layer and interacting with each
other.

in parameter
A = 1.0e — 6, and yi =

The interactions in our model are
V(R,0) = —In(R/7) — VAR — 7)/7, )
V(R,1) = VAR/T, 3)

where A is the ratio of the interlayer coupling to the
intralayer coupling p? and is assumed to be small.
The intralayer interaction term Eq. (2) has been shown
[8(a),12] to be a good approximation for the intralayer
interactions of vortices in layered superconductors. The
interlayer interaction, Eq. (3), approximates the short-
range interaction by the long-range interaction of vortices
in a layered superconductor which has also been shown to
be linear [13]. Interactions between vortices separated by
more than one layer (I = 2) are neglected. The constant
VA has been added to Eq. (2) to be consistent with the
definition of E. (which must be one-half the energy of
an intralayer vortex pair at smallest separation). The
origin of the linear dependence in the interactions is the
Josephson coupling between the layers and can be thought
of as the energy of a flux line connecting two vortices,
i.e., Josephson vortex loops [14]. For more details about
the interactions of vortices in layered superconductors, we
refer the reader to the literature [12—-15].

A RG study has been carried out on Eq. (1) with the
interactions given by Egs. (2) and (3) in a manner very
similar to Ref. [1]. We will sketch briefly the method
below and leave the details to a further publication [16].
The first step of a RG study, the coarse graining, is realized
by integrating out an annulus of with d7 and radius 7
around each vortex in D;. This incorporates the effect of
pairs with separation less than 7 + d7 on the interactions
of other vortices. As in Ref. [1], we assume that only
vortices of opposite vorticity can form such pairs.

The next steps are to rearrange the terms and rescale
the lengths so that the structure and limits of the new
partition function match those of Eq. (1). We then arrive
at a partition function with the same form as our original
but with renormalized parameters. The recursion relations
for those parameters [17] are

dx/de = 2y%(1 — AX) + O(y*A*?), )
dy/de = 2(x — VA)y + O(xy*2), (5)
dr/de = 2A(1 — 2y?) + O(y?*A%?), (6)

where € = In7, x =4/Bp?> — 1, and A =1/16 [18].
Equations (4) and (5) are very similar to those derived
by others for the layered system [5]. Equation (6), on
the other hand, contains a term not included by those
references but which is qualitatively similar to that
derived [9] for the 2D analog of our system. Inthe A = 0
limit, our equations reduce to the recursion relations of
Kosterlitz [1].

The terms of the recursion relations can be understood
in the following way. Any term that depends on the
density of vortices [i.., O(y?)] is due to the coarse
graining step and thus is the screening effect of the small
pairs which have been integrated out. Intuitively, one
would expect the screening to weaken the interactions.
The remaining terms are due to the rescaling step.

Our recursion relations include the first-order terms (if
they exist) of both the rescaling and the coarse graining.
Earlier studies [5,7] neglect the coarse graining term in the
recursion relation for A which turns out to very important
as we will show. It is the interplay of the two effects
that determines the critical behavior above and below the
transition. Therefore, for an accurate description of the
system, all lowest-order effects must be included.

We will now discuss each recursion relation beginning
with that for the strength of the logarithmic interaction,
Eq. (4). Here, the renormalization is due only to the
small pairs which decrease the strength of the coupling.
The addition of the Josephson coupling A weakens that
effect since the pairs now interact linearly at large R and
are therefore more tightly bound and more resilient to
small pair screening. As a result, fewer flows than in
the 2D case will go to the high-temperature limit. This
will be discussed further in the context of the transition
temperature.

In the second recursion relation, the renormalization
is due only to the rescaling and there is a first-order
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correction due to the interlayer coupling. There is a
second-order term due to the coarse graining but it
is negligible. The lowest-order correction in A makes
y grow more slowly, which ultimately has the same
effect on the critical behavior as the A correction to the
first recursion relation discussed above. The term also
provides the means for RG flows to terminate at positive
values of x, which affects the renormalized value of the
interaction strength. This will be discussed below.

The most interesting relation is that for A. The first
term is due to the rescaling step and contributes to a
growing A. Counteracting this is the second term which is
the effect of small pairs and which weakens the interlayer
coupling as one would expect. For small y, the first
effect wins out and A grows. For larger y, the latter term
dominates and A gets smaller. In RG parlance, A is a
relevant parameter in one regime and irrelevant in another.
This is reflected in Fig. 1 where we have plotted the RG
flows for certain initial values (denoted by subscript i) of
x and A and various initial values of v. For small enough
values of y;, the flows move toward y = 0 and then take
off to a large value of A. For larger values of y;, the
flows follow approximately the associated 2D flows, never
attaining a large value of A and ultimately moving toward
the A = O plane.

The recursion relation for A by itself suggests strongly
that the system is 2D above T, and 3D below, since A is
renormalized to zero for large y and grows for small y.
(Recall that y — = corresponds to the high-temperature
region since the vortex density is proportional to y.) This
scenario would be consistent with the Monte Carlo studies
[8] and discussions [19] of Minnhagen and Olsson.

An examination of all the recursion relations, however.
cannot confirm unambiguously the layer decoupling at
T., because the critical surface dividing the high- and
low-temperature regimes runs beyond the validity of our
recursion relations. This is reflected in Fig. 1 where
the ultimate flow of the RG curve (plus signs), whose
initial point is very close to the critical surface, remains
undetermined. As a result, one must use finite cutoffs
when integrating the recursion relations, and this has
the effect of blurring the immediate vicinity of T,.
Nonetheless, one can draw the following conclusions.

For T > T,, the vortex excitations have a significant
effect on the interlayer coupling, weakening it to zero
above and very close to T.. Although the size of this
“3D” region cannot be determined from our equations
for the reasons discussed above, it is certain to be much
smaller than previous estimates [7] which neglected the
effect of vortex fluctuations on the interlayer coupling.
For T < T,., the critical behavior is similar to that
predicted by other theories since the effect of screening
on A is small in this regime. In Fig. 1, one sees that
the system does cross over from 2D behavior to 3D at
temperatures less than and very close to 7.. However,
this 3D region is expected to be much larger than 73p, a
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scenario similar to that depicted in Fig. 7(a) of Ref. [19].
Once in the 3D region, it is likely that the ultimate
behavior of x and vy are controlled by 3D recursion
relations which is the scenario explored in Ref. [5(a)].

We can also conclude that the discontinuous jump in
the renormalized interaction strength p2 that was present
in the 2D KTB system is greatly reduced if not destroyed
in the layered system. This is a result of the A correction
to Eq. (5§) which causes flows to be stopped at finite
positive values of x. As one will recall, the terminus of
x is related to the renormalized value of the interaction
strength. A larger value of x corresponds to a smaller
value of p-.

The behavior of T, can be examined in light of the
relations (4) and (5). As we mentioned earlier, the effect
of the A term is to decrease the tendency of the flows
to go to the high-temperature limit. This increases the
low-temperature ‘“‘parameter space” which corresponds
to a higher transition temperature. This can be made
more rigorous by taking the definition [20] of 7, as the
maximum 7 such that

zin)fy(e) = () 17
Given an x;, the values of y; which satisty the above
equation grow with increasing values of A;. Larger values
of v, correspond to an increased temperature and therefore
a higher 7.

Further conclusions are somewhat speculative. [t is
likely that the transition is still one of unbinding, since
the critical surface seems to divide the regime where the
renormalized interaction strengths are finite and where
they are zero. Furthermore, because of the A dependence
in the interactions, vortex unbinding seems to go hand in
hand with layer decoupling.

The author has also derived the recursion relations for
the model of Ref. [9]: a purely 2D system of vortices
whose interaction is V(R,0) [Eq. (2)]. In Ref. [9], the
derived recursion relations for v and A include all of
the first-order effects and are qualitatively the same as
Egs. (5) and (6). The recursion relations we derive for
that system are given by Egs. (4)-(6) with A = 1/32.
This is remarkable: The critical behavior is the same
as for the layered system (except possibly for the small
temperature regime where A is large and our recursion
relations are no longer valid). The main difference seems
to be that 7. increases more in the layered system for a
given A. It appears then that the behavior of the system
is determined primarily by the large R linear dependence
of the intralayer interaction whose origin is the Josephson
coupling. This confirms that the essence of the critical
behavior is not determined by the interaction between
vortices in neighboring layers.

We shall now turn to applying our results to a class of
layered superconductors, the HTSC’s, in which the effect
of vortex fluctuations on the critical behavior of these
materials has been verified by numerous experiments [4].
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Even though Eq. (1) leaves out the effect of 3-, 4-,
and n-body interactions, it can be taken as a simple
model for the behavior of vortices in HTSC’s, because
it includes the basic excitation of the system, vortex
pairs, and the correct, bare interaction energy of the pair.
Furthermore, it addresses a very important aspect of the
problem, namely, the effect of vortex fluctuations on the
interlayer coupling. In this light, our RG results help to
explain why any vortex-induced property of the HTSC’s
has approximately the same behavior as in thin (2D)
superconducting films above 7.. One such quantity is
the resistivity [21] which, after taking into account the
underlying superfluid, is described [22] by

R = ARy exp{—2b[(T.o — T)/(T — Txr)]'?,  (8)

where A and b are constants of order unity, T is the
mean-field transition temperature, and Ry is the normal-
state resistance. The success of this formula has been
documented by many studies.

In conclusion, we have performed a rigorous RG study
of vortices interacting in a layered system. This is the
first such study on a layered system of vortices that
interact with potentials approximating those of layered
superconductors, to unequivocally demonstrate the effect
of vortex fluctuations on the interlayer coupling. We find
that the screening due to small intralayer pairs weakens
the interlayer coupling and is the dominating effect above
T.. This is consistent with the Monte Carlo studies of
Minnhagen and Olsson [8], which imply that the system
is 3D below T, and 2D above. The possibility of the
dimensionality of the critical behavior of vortices being
asymmetric about 7, hints that the layered system is even
more interesting than the 2D one.
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