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The series that arises from the semiclassical approximation for scattering amplitudes is studied when

the scattering is chaotic.

It is argued that the terms of the series decay with an exponent equal to
1/2d, where d is the capacity dimension of one of the classical scattering functions.

The result applies

to one-dimensional inelastic and two-dimensional elastic scattering, and it is verified numerically for a

one-dimensional model.
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The standard semiclassical approximation, based on the
Van Vleck formula [1], has proven to be a powerful
tool for calculating quantum effects for systems that have
chaotic classical dynamics. For example, it can be used
to propagate wave packets with remarkable accuracy [2],
and it leads to the Gutzwiller trace formula which gives
approximate values for quantum energy levels [3]. Recent
work has also applied Van Vleck’s formula to systems
that scatter chaotically [4], yielding approximations for
scattering amplitudes [5], resonances [6], and correlation
functions [7].

In this paper, we focus on the semiclassical expression
for scattering amplitudes, which has the form of a series
where each term corresponds to a particular classical
scattering trajectory. When the scattering is chaotic, the
terms of the series typically decrease algebraically, and
the series’ convergence properties may be nontrivial.
In particular, the series may or may not be absolutely
convergent, and the series may either converge rapidly or
extremely slowly.

Our main result is that the exponent, 3, characterizing
the decay of the series’ terms can, in many cases, be
determined from the capacity dimension, d, of the fractal
set of points on which one of the classical scattering
functions is singular. The value of this relation is that it is
usually much easier to calculate d than to find 8 directly
from the semiclassical series. Once B is known, one can
determine whether the series is absolutely convergent and
estimate the series’ convergence rate. Thus considerable
information about the semiclassical approximation may
be obtained from a simple classical calculation. The
discussion in this paper is restricted to one-dimensional
inelastic and two-dimensional elastic scattering, although
we expect similar results to hold in higher dimensions.
We also assume that the classical phase space contains
no Kolomogorov-Arnol’d-Moser (KAM) tori, since these
complicate the fractal properties of the classical scattering
functions.

As an example, we consider first scattering for the
one-dimensional system governed by the time-dependent

Hamiltonian
“+oc

An estimate of how rapidly the semiclassical series converges is given.

where x is the position, p is the momentum, and ¢ is the
time. The spatial variation of the potential is taken to
be V(x) = Vo(1 — Ix])%, if =1 < x < 1, and V(x) = 0, if
|x|] = 1. This system is an example of a kicked particle
model, similar to many others that have been used to
investigate chaos [8—10]. The classical scattering distri-
bution P (p, po) is defined so that a particle with an ini-
tial momentum py > 0 and an initial position xy, chosen
at random with the constraint xo < —1, has a probability
P.(p, po)dp of having a final (i.e., 1 — -+3) momentum
between p and p + dp. P.(p, po) can be expressed in
terms of the scattering function p(xo, po), which gives
the final momentum for a trajectory beginning with the
initial conditions (xg, po):

9py(xo), Po) po)|
aX()]

Pa(p, po) = Z

J

(2)

where {xo;} is the set of initial positions between —1I
and —1 — po satisfying p(xo;, po) = p [9]. Only a finite
range of initial positions need be considered, since the
periodicity in time of H implies ps(xo, po) = pslxo —
Po, po) for all xo < —1.

If Vo < 0, the scattering process is chaotic for a range
of values of po. The hallmark of chaotic scattering
is that the scattering function py(xo, po) is fractal [4],
as illustrated in Fig. 1. In particular, p, as a function
of xo is singular on a set of points having a capacity
(or box-counting) dimension d, with each singularity
corresponding to a trajectory that becomes trapped in the
scattering region (—1 < x < 1). These singularities are
said to lie on the stable manifold of a chaotic repeller. In
an arbitrarily small neighborhood about such a singular
point, the variation of p; is highly complicated, justifying
the term chaotic. The dimension 4, which can vary
from O to 1, may be easily obtained by determining
the uncertainty exponent a and using the identity d =
1 — « [11]. To find @, one calculates (numerically, in
practice) the probability f(e) that the signs of ps(xo, po)
and ps(xo + €, po) are different for a randomly chosen

_ _R_ _ xo. The uncertainty exponent is then defined by o =
H=75+Vw 3 st-n. D i _o[log f(e)/ log €.
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FIG. 1. (a) The classical scattering function ps(xo, po) Vs

xo for Vo = —1.0 and py = 0.5. (b) and (c) are successive
enlargements of (a) showing the self-similarity characteristic
of fractals.

The Van Vleck formula gives a semiclassical approxi-
mation for the quantum mechanical propagator [1]. Ap-
plying it to scattering governed by H, one arrives, after
some conventional manipulations [12], at the expression

2mh
= TP, p)P Y 8(p — ) 3)

P(p,po) = 7100

for the quantum scattering distribution. Here T(p, po)
may be interpreted as the scattering amplitude and the
{gn} are the real solutions of ¢2/2 = p3/2 + 2mhm, for

all integer m. The appearance of & functions in Eq. (3)
is a consequence of quasienergy conservation that follows
from the periodicity of H. The scattering amplitude is
given by
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with the integral being evaluated for the trajectory begin-
ning at (xo;, po). The index »; is simply equal to —1 if
Vo < Oand0if Vo, > 0.

In some cases, the sum appearing in Eq. (4) is not
absolutely convergent and is thus meaningful only if an
order for the terms is specified. Henceforth we assume
the terms to be ordered according to their absolute mag-
nitudes. Defining weights w;(p, po) = |9ps/dxo;|!/?
and phases 6;(p,po) = Fj/i — wv;/2, Eq. (4) can be
written as

+o

T(p,po) = . w;(p, po)e'® PP, (6)
j=1

with w; = w;;. Numerically, we find the weights to
decay, on the average, proportionally to j~8, as shown
in Fig. 2, if po and | p| are less than a critical value p..
Inside this critical range, B is independent of p and po,
while outside the series truncates after a finite number
of terms.

The evaluation of the weights is greatly facilitated by
exploiting the fact that their associated trajectories can be
assigned binary symbols. Consider the positions at times
t = n (i.e., when the particle is kicked), and indicate with
a — each time the position is between —1 and 0 and with
+ each time the position is between 0 and +1. Thus
every scattering trajectory is labeled by a finite sequence
of +’s and —’s. Moreover, it is easy to show, using
the piecewise linearity of the equations of motion that
follow from H, that for given (p, po) there is at most
one trajectory for each sequence. This allows the weights
to be found in a systematic and efficient manner. A
further simplification is that the weights depend only on
the symbolic lengths of the sequences (e.g., the weights
associated with — + — — + and — + + — + are the
same), which accounts for the steps in Fig. 2.

The central result of this paper is that

B =1/2d. (7)
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FIG. 2. Log-log plot of the weights w;(p, po) vs j for V, =
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—1.0, p =10, and p, = 0.5. The weights decay, on the
average, as j~#, where in this case 8 =~ 0.950.

A comparison of B with 1/2d is given in Table I for sev-
eral values of V), indicating good agreement. The values
for B were found by calculating all the scattering trajec-
tories up to a symbolic length of 20, while the values
for d were obtained from the corresponding uncertainty
exponents.

To understand why this relationship holds consider
pr(xo, po) for fixed po on the interval —1 — po = xp <
—1. This interval is divided into an infinite number of
subintervals by the singularities associated with trapped
trajectories (symbolically these are represented by infinite
sequences of +’s and —’s). If these intervals are ordered
according to their lengths, the length of the jth interval
is ~j~4. Since the variation of p; is about the same
for each subinterval, a “typical” derivative, dp;/dxo, for a
subinterval scales inversely with the subinterval’s length
or as j/4, suggesting that the weights scale as j~!/29.
One may object that the subintervals and weights are not
in one to one correspondence; indeed most subintervals
contribute an infinite number of weights for particular
values of p. However, for a given subinterval the weights
decay roughly exponentially, and it can be shown that this
is sufficiently rapid to justify Eq. (7). When | p| or p is
larger than p., Eq. (7) does not apply, because none of
the allowed scattering trajectories come near the chaotic
repeller.

TABLE 1. Numerical results for several values of V,. In all
cases, 1/2d is very nearly equal to the exponent 3, as predicted

by Eq. (7).

Vo B Pe d 1/2d
-0.5 0.750 1.62 0.67 0.75
-1.0 0.950 273 0.52 0.96
-15 1.130 3.79 0.44 1.14
-2.0 1.272 4.83 0.40 1.25
—-2.5 1.388 5.85 0.36 1.39
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The above argument is readily extended to other
one-dimensional inelastic scattering models and to two-
dimensional elastic scattering. The semiclassical ampli-
tude is generally given by an expression similar to Eq. (6)
with the weights being determined by the derivative of a
classical scattering function. For two-dimensional elastic
scattering, the relevant classical scattering function is
the final scattered angle 6; as a function of the impact
parameter b, and the weights are simply [36,/ab;| />
[5]. The exponent B8 should be equal to 1/2d for a range
of final angles, and outside this range the weights should
decay faster than j~!'/2¢. One restriction on Eq. (7) is that
it may fail when the scattering is nonhyperbolic, as is the
case when KAM tori are present. For such systems, the
fractal properties of the scattering function are somewhat
different than have been assumed [10, 13].

When Eq. (7) holds, it can be used to relate the
dimension d to the convergence properties of the series
for a semiclassical scattering amplitude [14]. The series
is absolutely convergent if 8 > 1, which according to
Eq. (7) will be true if d < 5. The number of terms
that should be evaluated in order to obtain a reasonable
approximation can be roughly estimated by considering
the series

Te =D j Pt (8)

where the phases 8] are taken to be random. The
convergence rate of the sum in Eq. (8) is likely to be
similar to that in Eq. (6), since the phases in (6) often
behave in a pseudorandom manner. If Ty is approximated
by the first N terms of (8), there will be an error Ey =
PR ~B¢i% . The average of the squared magnitude
of Tr is

(Tel?y = 2 i =~ @B~ 17", )

j=1

while (|Ex|?) = [(2B — 1)N?#7']"!.  Demanding that
(IEn1?) be less than 1% of (|Tk|*) and using (7) leads to
the condition

N > 1001/(2B"1] — 100(1/(1”(1)» (10)

This inequality implies that the number of terms needed to
accurately determine a semiclassical scattering amplitude
depends sensitively on the dimension d. For example, if
d= % only a few terms would be needed, while d = %
requires about 100 terms and d = % about 10° terms. As
d approaches 1, the estimate (10) diverges, suggesting that
a straightforward evaluation of the semiclassical series is
not feasible.

In summary, the convergence properties of the series
for the semiclassical scattering amplitude may be conve-
niently determined from the capacity dimension d. When

d < %, the series converges absolutely and rapidly. When
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% <d< % the convergence is not absolute, but probably
the first few thousand terms of the series are sufficient to
obtain a good approximation for the scattering amplitude.
Finally, when d is significantly bigger than % a direct
evaluation of series is likely to be extremely difficult.
In such cases, more sophisticated summation techniques,
perhaps similar to those applied to the Gutzwiller trace
formula [15], appear to be called for.
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