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Intramanifold Chaos in Rydberg Atoms in External Fields
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Highly excited Rydberg atoms are atomic-scale laboratories where the quantum mechanics of chaotic
systems can be tested. The extensive symmetry breaking introduced into the Coulomb potential by
crossed electric and magnetic fields removes the obstacles for phenomena not possible in 2 degrees
of freedom. %e bring out the classical structures that support the complexity of motion and lead to
alternating layers of order and chaos. The special status assigned to certain dominant periodic orbits by
experiment emerges naturally in our treatment.

PACS numbers: 32.60.+i, 03.65.Sq, 31.10.+z

The purpose of this Letter is to report on some remark-
able classical structures that support the great complexity
of electronic motion in Rydberg atoms in crossed external
fields. Confronting classical and quantum mechanics in

regimes where the classical motion is chaotic is one of the
fundamental problems of this decade, as evidenced by the
enormous outpouring of research in the subject. In par-
ticular, the attention of nonlinear dynamicists and atomic
physicists has become focused on electron dynamics and

spectroscopy of highly excited Rydberg atoms placed in

external fields. There are two reasons for this intense
interest: These atoms can be prepared and manipulated
in the laboratory, and they are amenable to theoretical
treatment, often with astonishing accuracy [1,2]. Their
Hamiltonians possess simple nonlinearities which lead to
chaotic dynamics. The very high excitations involved im-

ply that detailed quantum treatment can be tedious; on the
other hand, the same high excitations place the electron in

a regime where reasonable accuracy can be expected of
the correspondence principle. Therefore, Rydberg atoms
in static external fields constitute atomic-scale laboratories
where the quantum mechanics of highly nonlinear systems
can be tested [3].

The symmetry breaking of the Coulomb potential [4]
induced by external fields (in practice the magnetic field
is of greater interest since the Stark problem is separable)
affects the three quantum numbers n, I, mt of the Rydberg
electron differently: As long as a single field direction
is present, m& remains a good quantum number, l breaks
down extensively, whereas n breaks down only gradually
with increasing magnetic field [5]. Therefore, an n mani-

fold of electronic energy levels does not have enough de-

grees of freedom for chaos, which only develops when
different n shells mix ("intermanifold chaos"), usually
close to the ionization threshold. In contrast, the exten-
sive symmetry breaking introduced by two misaligned (in
practice, crossed) fields leaves no continuous symmetry
intact and thereby opens the floodgates for a wealth of
new physics which is only possible beyond 2 degrees of
freedom: For instance, Arnol'd diffusion can take place
in this experimentally accessible system. Less esoteri-

cally, it also becomes possible to excite wave packets
localized in all spatial dimensions, and the observation
of these wave packets, which was accomplished recently
[6], opens an exciting window on the dynamics of the
electron. Yet another is "intramanifold chaos": the mini-
mum number of dimensions required for chaos is reached
within an n shell of the atom, often well before the ion-
ization threshold. The easy accessibility of the chaotic
region and the prospect of tuning the extent of chaos
through external means offer great advantages for experi-
mental investigations.

The deceptive simplicity of the perturbed Coulomb
Hamiltonian (in atomic units)

A = —p + —m+ —(x +y} ——+Fx (1)
1 2 B B
2 2 8 I"

is belied by the rich nonlinear dynamics it generates.
Here, the magnetic field 8 points in the z direction,
the electric field F is in the x direction, and m is the

z component of the electronic angular momentum I
r x p, Great complexity is evident in the recent high-
resolution photoabsorption experiments of the Welge [7]
and Walther [8,9] groups whose successes in relating
some of their peaks to periodic orbits is evidence that
the periodic motions of the electron underlie much of the
classical-like oscillations in these spectra, a finding which
constitutes an elegant experimental connection between
classical and quantal theories, as well as being a striking
demonstration of the Gutzwiller formalism [10]. To
identify the classical structures that support these complex
spectra is a great challenge. Given the Hamiltonian, it
might be thought straightforward (if tedious) to perform a
systematic search for periodic motions, until one realizes
the magnitude of the task: This Hamiltonian has an

enormous number of recurring and periodic motions [11)
and even equipped with the various field- and quantum-

number dependent broken symmetry chains of the SO(4)
group, this program will amount to little more than

searching for a needle in a haystack.
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FIG. 1. Poincarb surfaces of section (PSOS) generated from the approximate Hamiltonian. The magnetic field B is kept constant,
and the electric field is increased steadily. Note the stable fixed point on the left hand side, which is robust throughout these
changes of parameters. Chaos seems to originate from the unstable fixed point on the right. These two motions differ from each
other solely through the relative phases of the J and K rotors (see text).

In this Letter, we demonstrate how this intricate and
important problem can be simplified considerably by ex-
pressing it in terms of coupled asymmetric tops. The
resulting approximate Hamiltonian reveals not only the
experimentally significant periodic orbits and their bifur-
cation behavior but also some intriguing order-to-chaos
alternations, presumably induced by novel adiabatic in-
variants. The technically involve derivation [12] is as fol-
lows. The regularization [10] of Hanultonian (1) in the

four Kustaanheimo-Stiefel coordinates u [13] and their
conjugate momenta p„leads to a pseudo Harniltonian
which is then analyzed using the succession of canonical
transformations of the F2 type of canonical perturbation
theory [14]. When the enormous number of terms in the
resulting Birkhoff normal form are collated in terms of the
two angular momenta J and K inherent to the Coulomb
problem [15], the Lie algebraic generators of the group
SU(2)SU(2) [locally isomorphic to the symmetry group
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FIG. 2. Degree of chaoticity of the phase space: The percentage of chaotic trajectories with initial conditions pJ = p& = 0, which
by symmetry are the most significant set of initial conditions. Note the "ridge of stability" along the line F/8 = 4/7. Clearly, by
changing the 8 and F fields judiciously, the system can be made to undergo repeated transitions between chaos and order.

SO(4) of the Coulomb problem], the normal form, correct
to second order in the fields, contains a pair of degenerate,
strongly coupled asymmetric tops in J, K. The action-
angle forms of these generators which are needed for
subsequent classical-mechanical analysis are best ex-
pressed in terms of the extended Lissajous variables
[16,17]. Because n, which determines the norm of J and
K, is a conserved quantity in our treatment, this normal-
ization reduces the problem to 2 degrees of freedom. We
performed our classical calculations at n = l, though any
other n will do as long as the fields are scaled accordingly.
The dynamics is governed by the quantities Bn3 and Fn
for which we adopted experimentally realistic values.

The Poincare surfaces of section (PSOS), when dis-
played in terms of the conjugate dynamical variables of
the rotors, show an order-chaos-order transition as a func-
tion of increasing electric field (Fig. 1). While one ex-
pects a strongly coupled nonlinear system to show a
transition from order to chaos with increasing coupling,
its return to order with yet higher coupling is unusual
and attests to the intriguing complexity of the system.
These PSOS's are generic for many other scenarios of

the crossed fields system; for instance in cases where
both fields are increased simultaneously (see below). The
PSOS's show further that one stable (on the left hand side)
and one unstable (on the right hand side) motion result
from the coupling of these two unstable rotations. Chaos
spreads from the unstable fixed point on the right. This
alternation can be understood in terms of the rotor picture.
Each of the two asymmetric tops in that Hamiltonian has
one unstable and two stable axes of rotation. One intui-

tively expects erratic motion when both tops are rotating
around their unstable intermediate axes. Indeed, the pa-
rameter range where the overall motion is most chaotic is
not far from this double-unstable excitation of the pair of
tops as can be verified by studying the exact dynarriics. Qf
course, their strong (bilinear) coupling alters this idealized
picture of the dynamics: The Poincare SOS's in Fig. 1

show that of the two motions resulting from the coupling
of two asymmetric top rotations, one is stable and robust
to changes of external parameters, whereas the other (the
one on the right hand side) is not. However, when viewed
in the asymmetric top variables, these radically different
motions are distinguished only by the relative phase of the
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two rotors in J and K: In the stable one, the phase dif-
ference is m, whereas in the unstable one the rotors are in
phase.

A striking connection to laboratory Rydberg spectra is
established by examining the fixed points of the PSOS.
When the motion contained in the robust stable fixed
point is translated to Cartesian coordinates, it turns out
to be the one planar periodic orbit (denoted Cq by
Raithel, Fauth, and Walther [9])which dominates most of
their recent photoabsorption spectra. In our asymmetric
top description, its prominence is clearly connected to
the stability of the motion, and its special status is
evident at once (it is worth recalling that our model
does not presuppose planarity of motion). Of course
there are other fixed points surrounding this one, and,
when they are examined, they all hu~ out to correspond
to other prominent periodic orbits of the system (often
of astonishing cotnplexity) implicated by experiments
differing in their laser polarizations [8]. Further windows
on the dynamics are opened by examining the percentage
of chaotic trajectories as a function of electric and
magnetic fields (Fig. 2). Repeated transitions between
order and chaos are observed, when, for example, the
electric field is increased at constant magnetic field
(indeed, the PSOS's in Fig. 1 correspond to various
electric fields at magnetic field B = 0.9 atomic units in
this diagram). This layering indicates that the complex
phase space contains stable classical structures within
chaotic areas. One of these structures becomes evident
when the electric and magnetic fields are increased in
a roughly 4:7 ratio: The system walks on a ridge of
stability deep into the chaotic region, indicating that for
these parameter values there is an adiabatic invariant
[belonging to the subgroup O(3) g [11]].

Given the enormous size of the parameter and phase
space of the problem, our treatment of the dynamics is
a considerable advance since the location and nature of
these special areas and motions would be very difficult

to pinpoint without the guidance of our picture. In
particular, the special status assigned to some intricate
periodic motions of the electron by recent experiments
is connected naturally to their stability properties through
our treatment. Partial support of this research by the
A. von Humboldt Foundation is gratefully acknowledged.
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