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A quantitative description of the qualitative feature of multihadron final states known as the “number
of jets” is given by a sequence of infrared finite shape observables (jet discriminators) that take
continuous values between 0 and 1, are stable—unlike clustering algorithms—against small variations
of the input (data errors, Sudakov effects, etc.), and have a form of multiparticle correlators that is
natural in the context of quantum field theory and hence are better suited for a systematic study of
theoretical uncertainties (logarithmic and power correlations).
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The jet paradigm is the foundation of high-energy col-
lider physics [1]. It is based on the experimental evidence
for hadronic jets [2] and the quantum chromodynamics-
based picture of hadronic energy flow, inheriting the shape
of partonic energy flow in the underlying hard process
[3]. However, the problem of adequate numerical descrip-
tion of multijet structure of multihadron events has proved
theoretically subtle; its apparent simplicity has turned out
to be deceptive, while its satisfactory solution has been
elusive. The fundamental role of calorimetric measure-
ments in high-energy experiments warrants a scrutiny of
the logical principles of such measurements.

It makes sense to divide the problems where jets
are studied into two classes. The descriptive theory of
hadronic jets studies the dynamics of jets as such [4]; one
is mostly interested in the qualitative effects that occur in
the leading logarithmic order; a systematic improvement
of theoretical predictions is, typically, hardly possible [5].

The second class (precision measurements) comprises
quantitative studies of the standard model (determination
of @s(Q?) — o, etc. [1]), where one aims for the highest
reliability for both data and theoretical predictions.

Reliability of data means that the problem should be re-
garded as one of measurement rather than one of modeling
dynamics. One has to ensure that measurements are stable
with respect to errors in data from calorimeter cells, their
position and geometry, etc. (otherwise physical informa-
tion may be distorted by artifacts of measurement proce-
dures), and that the data that experimentalists produce is
not biased by the imperfect knowledge of the details of
dynamics.

Reliability of theoretical predictions means that it
should be possible to systematically include logarithmic
and power corrections. The observables one uses should
conform to the general structure of the underlying formal-
ism [perturbative quantum field theory (QFT) to ensure
better control over theoretical uncertainties due to a con-
siderable sophistication of the modern analytical methods
of the theory of Feynman diagrams [6].

Jet counting is an attempt to use jets of hadrons to tag
events. Its great usefulness [7] is due to the fact that the

very presence of jets and their numbers is the most direct
and clear manifestation of the dynamics of QCD.

Conventional jet counting determines an integer number
of jets for each event using algorithms [8], which attempt to
reconstruct the underlying partons’ momenta by, in effect,
inverting the hadronization. They were invented [9] in
the context of the descriptive theory of jets and involve
many ambiguities [8], and their use in measurement-type
problems may not be accepted uncritically.

On the theory side, the definition of jets in such
algorithms uses phase-space cutoffs to take into account
cancellations of /R singularities. This is rather unnatural
within the formalism of QFT: One has to recur to
numerics even in simpler cases [10]; whereas a study of
power corrections remains practically impossible.

On the measurement side, any algorithm that produces
an integer number of jets cannot be fully satisfactory —
even before any dynamics are involved. Indeed, such
an algorithm rips the continuum of multiparticle states
by mapping it to the discrete set of natural numbers. A
discontinuous mapping is unstable with respect to small
variations (measurement errors or unknown high-order
corrections) for some values of input data (cf. Fig. 1)
[11]. As a result, the inversion of hadronization is a
mathematically ill-posed problem, hence the problem of
spurious jets, and the sensitivity to Sudakov effects and to
irrelevant details of recombination procedures [8]. This
pathology is somewhat masked by averaging over many
events. But a deterministic recombination algorithm is
applied separately to each stochastically generated event.

FIG. 1. The crosses are the values of the jet discriminators J,,
for a typical final state. When looked at sideways, the thick
lines represent the number of jets as a function of y.,,.
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So, instead of a statistical compensation of errors, there
occurs a smearing between cross sections with adjacent
numbers of jets [12]. It can be disposed of neither by
increasing statistics nor by varying the jet resolution yc.,
and it is more important for smaller y.,;, lower energies,
and larger numbers of jets [13].

What, then, could be a quantitative measure for the
qualitative feature of multiparticle final states known as
the “number of jets,” a measure that allows a correct
handling of data errors and a systematic study of theoreti-
cal uncertainties, and one that is unbiased by the imperfect
knowledge of jet dynamics?

Mathematical nature of energy flow.—If w is a
calorimeter cell, then the energy deposited in it by
particles that hit the cell is E(w) = 0. Energy conserva-
tion implies that if one takes two nonoverlapping cells
o and ' and combines them into one, then the energy
deposited in it is the sum of energies deposited in w
and o' separately: E(w U 0') = E(w) + E(w'). One
can consider cells w simply as parts (subsets) of the
unit sphere around the collision point. Then the energy
flow (EF for short) is a non-negative additive function
on the subsets w. Such functions are known as abstract
measures [14,15].

Let P be a multiparticle state, P = {E;, p;};, where E;
and p; are the energy and direction (a unit 3-vector) of the
ith particle. All information about P, obtainable using
calorimeters, is EF represented as a linear combination of
6 functions localized at p;,

Ep(p) = D Eid5(D). M
where P is a variable unit 3-vector running over the
sphere. The energy measured by a cell w is

Erw) = [ apEr®) = 3 .
@ P€Ew

The observables we deal with in calorimetric measure-
ments are functions of EFs E. Let f(E) be such a func-
tion. Its stability with respect to data errors translates into
a concrete kind of continuity. Let E, be a sequence of
EFs such that, however small the energy resolution and
geometry of calorimeters, E, becomes indistinguishable
within data errors for all n large enough. This calori-
metric or C convergence of EFs is formalized as follows.
Let 0 = ¢(p) = 1 be a continuous function on the unit
sphere. It can be thought of as describing the local effi-
ciency of a calorimeter cell: For a given EF E(p), the ex-
pression [dp E(p)e(p) = (Eg) is the energy measured
by this cell. Then C convergence of E, is equivalent to
the numerical convergence (E,¢) for any “detector” ¢
[16]. For a correctly defined observable f, f(E,) should
converge in numerical sense for any such sequence E,.
Such functions f (calorimetric or C observables) are ex-
actly the ones that are stable with respect to measurement
errors of calorimetric detectors.
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The role of C continuity is best understood with the help
of an analogy between the familiar length measurements.
Length is habitually represented as a real number—an ide-
alization that, one tends to forget, is highly nontrivial from
a historical perspective. In particular, the familiar conti-
nuity of real numbers is useful only inasmuch as it corre-
sponds to the stability of, say, volume computations with
respect to data errors of the length measurements involved.
The elusive reality of calorimetric measurements is that,
whereas rulers measure length as a real number, calorimet-
ric detectors measure energy flow as an additive function
on subsets, and C continuity plays exactly the same role
for data errors of calorimeters as the usual continuity of
real numbers does for rulers.

A large class of C observables is immediately found as
follows [17]. Consider the direct product of m identical
EFs E(p). Then the standard theorems [14] imply C
continuity of the observables of the following form:

Full) = [ db- [ dBuE®) - EGm) i, . ).

)

where f, is any continuous symmetric function. A
function on EFs induces a function on multiparticle
states: Using (1) and (2), one obtains

FuEopi) = D Ei - Eifu(Biye--oBin). (3

iy i

This is automatically fragmentation invariant. If f,
satisfy minimal requirements of regularity (e.g., the exis-
tence of first derivatives), then F,, are IR finite [18]. Such
C observables are interpreted as average values of opera-
tors that are m local in momentum space, which offers a
possibility of their systematic theoretical study [19].
Examples of C observables are the well-known
thrust sphericity, etc. (See Ref. [4] for a complete
list) [20].

Algebraic combinations of C observables are again
C observables. But taking, e.g., infinite sums of such
functions (m — +) requires care: One can arrive at
observables that are IR safe in each order of perturbation
theory, continuous in the ordinary sense as functions of
particles’ energies and momenta for any fixed number
of particles, but not C continuous [21]. A complete
understanding of this subtlety in a general QFT context
is lacking. Anyhow, C continuity limits available options,
and if one wishes to deal with correlator-type observables,
then the above F,, remains the only choice.

Measuring the number of jets.—Imagine a step func-
tion equal to 0 on states with less than m jets, and equal to
1 elsewhere. A sequence of such functions (m = 1,2,...)
would do the job of jet counting just fine. But we wish
to deal with C observables. So, consider a C observ-
able (3) that is exactly O on any state with less than m
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particles. Then f,(,P,...) =0, so that f,(Pi,P2,...)
should contain a nullifying factor A,, e.g.,

A, =1 — cosbia = (p1p2) (P1P) '(p2P)™!, (W)

where p; are lightlike 4-momenta (p? = E;,p; = Eipi),
and the 4-vector P2 = 1 describes the reference frame
[22]. Symmetry yields a similar factor for each pair of
arguments. One obtains the sequence of jet discrimina-
tors

Jm(El’ﬁla"-,EN»iiN)
= Y EyEyjnis..Bi), O
1=i,<-~<iy=N
jm(pl»---’ﬁm) = Np l—[ Aij .
Isisj=m

It turns out that 0 =< J,, = 1 on any state if N,, is defined
from the condition J,,(P$™) = 1, where P$™ is a limit
of uniformly distributed states P,svym, with N — o, so that

:=N"'and Y; — (N/4m) [dp;. Then N, =2, N3 =
27/4, Ny = 36, Ns = 9375/32, and Ng = 4555625/128
[23].

Some special values of J,,(P) are as follows. For the
state Py consisting of three symmetrically arranged par-
ticles, J3(P3™") = 27/32 ~ 0.84. Fora symmetric state of
four particles (tetrahedron) J3(P™) =1 and J4(PS™) =
64/81. For a symmetric state of six particles (octahedron),
J3(Pe") = Ju(Pg") = 1.

Figure 1 shows a typical picture of values of jet dis-
criminators. The usual jet counting amounts to replac-
ing the continuous J,, with O or 1 (circles). This can be
achieved, e.g., by introducing a cutoff y.,, as shown [24].
The nonzero tail at large m is due to hadronization (in-
cluding Sudakov effects). The instability with respect to
such effects as well as to data errors (shifts of the crosses)
is clearly seen [25].

Note that J,, = 0 for m larger than the number of
particles (or detector cells). For decreasing width ® of
jets and for m > M (a typical number of jets in the
event), J,, are increasingly suppressed by powers of ®2
and of the energy fractions of soft particles. This ensures
a monotonic decrease of the values of J, for m > M
for typical events. Numerical experiments show that the
decrease of J,, is a universal feature even for m < M
[23,26].

Fragmentation causes the values of J, to increase
as compared with the parton state. However, the C
continuity of J,, ensures that the closer (in the calorimetric
sense) the final hadron state to the parton state, the less
the difference in values of C observables, and the less the
upward shift of J,,.

For the case of hadrons in the initial state one should
modify J,, to suppress contributions from the hadron
beams. For pp, say, it is sufficient to introduce into j,,
the factor 1 — cos?8; per each particle, where 6; is the
angle between the particle’s direction and the beam axis.

Now, fix a multiparticle state P and consider any jet
counting algorithm A that produces an integer number
of jets Na(ycu; P) for each yc,, which is nondecreasing
as yc.ie — 0. Then from Fig. 1 one sees that one could,
in theory, restore a sequence of jet discriminators J2(P)
similar to J,,(P). Thus, the information content of J4(P)
and N4 (ycu; P) is essentially equivalent. But it is hardly
possible to find meaningful expressions for J24(P) for the
popular algorithms. Our J,,(P) are singled out by the
transparency of analytical structure.

So, studying the average values of jet discriminators
(Jm) (qualitatively interpreted as fractions of events with
no less than m jets) instead of the usual rn-jet fractions
may have an advantage of reducing, in perspective, both
theoretical and experimental uncertainties.

To compute (J,) from data, one would treat each
calorimeter cell as a particle (the correctness of this
ensured by C continuity). Computations can be optimized
due to the regular structure of J, in several ways:
(i) One can do the summations by the Monte Carlo
technique with probabilities equal to energy fractions.
(ii) A preclustering can be used, due to C continuity,
to reduce the number of particles to, say, =30 when
computations are easily manageable; since the exact
expression is known, the approximation errors are fully
under control here. (iii) The computation of (5) can be
parallelized.

On the theoretical side, studying the effects of
hadronization would reduce to studying logarithmic and
power corrections to (J,,). Resummation of logarithms
is done via the standard renormalization group. The
analytical calculations of the corresponding diagrams are
easier due to the simple analytical form of the weights
in the phase-spacing integrals [cf. (4)]. Also, a prospect
opens for a study of power corrections [27]. Recall that
the power corrections for o.(e*e™ — hadrons) « J,
are given by expressions involving vacuum condensates
[28] that are directly related to soft singularities; the
structure of power corrections can be obtained within
perturbation theory [29], while the values of condensates
are estimated via the lattice QCD. A similar approach
should be feasible for the jet discriminators [30].
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