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Analytical Solution to the Quantum Field Theory of Self-Phase Modulation
with a Finite Response Time
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The quantum theory of a field in 1+1 dimensions coupled to localized oscillators is developed.
The solution to the Heisenberg equation for the field is given in closed form. It is shown that the
nonlinearity of the medium is inevitably accompanied by phase noise of the field. This noise explains
the preferential growth of the Stokes wave for short propagation distances.
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In recent years the study of quantum field theories in
spaces with reduced dimensions has been the focus of
considerable attention [1]. This interest is justified in

part by the integrability of some of the models and the
physical insight that exact solutions can bring to theo-
ries in 3+1 dimensions. In certain cases, however, the
reduced dimensionality corresponds to physical systems
like strings, fibers, membranes, or surfaces where one or
two dimensions of space are either absent or do not play
a significant role. In this Letter we present an analyti-
cally solvable theory for a field in 1+1dimensions coupled
to localized oscillators. This theory provides a simple
and self-consistent model for the quantum propagation
of pulses in single mode and dispersionless optical fibers.
Our analysis reveals that the oscillators, which represent
molecular vibrations, are not only responsible for a de-

layed nonlinearity of the field, but also produce phase
noise. The exact relation between the response function
of the nonlinearity and the spectrum of the noise follows
from the canonical structure of the theory.

An important goal of this work is to understand the
quantum mechanical evolution of the electromagnetic
field fiuctuations in nonlinear optical media. Our con-
struction provides nonperturbative expressions for all the
moments of the field in the limit where the medium
is dispersionless and one transverse mode can be stud-
ied independently from the others. It is then a natural
starting point for a perturbative analysis of other effects.
On a more fundamental level, our model suggests that
medium induced nonlinearities in general, unlike nonlin-
earities present at the elementary level, are accompanied
by noise. Our analysis shows how the preservation of
commutation relations ean be used to probe the physical
properties of this noise.

Let a(P) and at(P) be the annihilation and creation
operators for an excitation of the Beld with wave number

P and frequency w(P). If only modes within a narrow
range of wave numbers centered around Po are excited,
one can assume a linear dispersion relation, w(P) = ao +
vs(P —P{)). Defining the slowly varying envelope A(z, t)
by

A(z, t) = e'~" '~"
27r

dP e'~' a(P, t),

we find, from Ho = h f dP u)(P)at(P)a(P), the Hamilto-
nian,

H;„t ———hK dz ALLA A.

The Hermitian operator nNL(z, t) commutes at equal
times with the envelope and represents the matter de-
grees of freedom affecting the field. Comparing (2) and
(3), nNi, (z, t) can be interpreted as a local change of the
carrier frequency, or, with r. = v id~t)/d—n, as a small
change of the local index of refraction. Using the coordi-
nates (z, r = t —z/vs), the Heisenberg equation for the
envelope is [2]

0—A(z, 7.) = irnNL(z, r)A(z, r}.
t9z

We emphasize that canonical commutators apply at equal
t and not at equal 7..

The Hermiticity of nNL has an important consequence.
Consider the operator I(z, r) = At(z, r}A(z, r) measur-
ing the fiux of quanta (photons) at z. Using (4) and
its Hermitian conjugate, we And that I is z independent.
This indicates that even though the phase of the envelope
is affected by the medium, the Aux of photons travels un-

changed at the group velocity. If all photons were of the

so: h —&OA A+ {{)A A A {) A) I. {2)
Vg 2

The envelope was normalized to satisfy the equal
time commutation relations [A(z, t), A(z', t)] = 0 and
[A(z, t), At(z', t)] = vgb(z —z'). In the absence of nonlin-
earity each annihilation operator evolves independently
according to a(p, t) = exp[—i~(p)t]a(p, 0). In this case,
the space time evolution of A occurs only due to the
bandwidth of the superposition in (1). The nonlinear
coupling of the field to the medium is introduced through
the interaction Hamiltonian,

240 0031-9007/94/73 (2)/240(4) $06.00
l994 The American Physical Society



VOLUME 73, NUMBER 2 PHYSICAL REVIEW LETTERS 11 JULY 1994

same frequency, I would be proportional to the z compo-
nent of the Poynting vector. However, A(z, r) contains
modes of a finite bandwidth coupled with the medium.
Since photons can exchange energy with the medium and
simultaneously change frequency, the conservation of the
flux of photons does not imply the conservation of the
energy of the pulses.

It is convenient at this point to cast our theory in
terms of input and output operators. The pulses are in-
cident from a linear region (z ( 0) onto the medium, and
coupled out again to another linear region (z ) t). To
simplify we will assume that the three media have well
matched transverse modes so that no reflection occurs at
the boundaries. We denote by "i" and "o" the fields at
z = 0 and z = l, respectively. In the linear sections, the
fields are functions of r only and one then has

[A, (r), A, (r')] = 0; [A, (r), A, (r')] = 6'(r —r'), (5)

[A,(r), A, (r')] = 0; [A,(r), At(r')] = b(r —r'). (6)

Indeed one can express the i fields in terms of the fields in
the linear input section at some large and negative time
to ~ —oo. For example, A, (r) = A(v~(ta —r), tp), where
in this last Beld we reverted to the original coordinates
(z, t) = (z, r + z/vs). The equal time commutators for

A and At then imply (5). The same reasoning can be
applied to the o fields with to ~ oo. When the bound-
aries are partially transmitting, the zero point fluctua-
tions from the backward traveling channels ensure that
the input and output commutators are satisfied. Writing
I(r) = A, (r)A, (r), we clearly have from (5)

(7)

The final part of our theory specifies the time evo-
lution of nNL. Fortunately it is not necessary to know
the detailed microscopic Hamiltonian of the material to
determine its optical properties. The interaction Hamil-
tonian indicates that the nonlinear index couples to the
envelope only through its intensity. Optical nonlinear-
ities being usually very small, it is sufhcient to expand
ANL in (4) up to first order in its dependence on I:

rnNi, (z, r) = dr' f(r')I(r —r') + m(z, r). (8)

Returning to the (z, t) coordinates and writing I(r r') =-
At(z, t —r')A(z, t —r') in the integral, f(r) is seen to de-
scribe a delayed Kerr-type nonlinearity and vanishes by
causality when r ( 0. Owing to the extremely short re-
sponse time of the Kerr effect in material like silica (~ 5
fs), one usually considers this nonlinearity instantaneous
when studying the classical propagation of long pulses.
Several authors [3,4] pointed out, however, that quan-
tum theories of light in instantaneous Kerr media [5] are
ill defined in the absence of dispersion due to the infi-

nite bandwidth of the vacuum fluctuations coupling to
any frequency window of interest. Hence, even though
one is interested in the quantum evolution of long pulses,
reference to the much shorter response time of the non-
linearity is unavoidable.

The operator m(z, r) in (8) describes the quantum and
thermal fluctuations present in nNg in the absence of op-
tical field. The photon flux being unaffected by its prop-
agation in the waveguide, one must have

[I(r), m(z, r')] = 0. (9)

The nonlinear index is then described by a traveling dis-
tortion on an independent noise background. Introducing

(8) into (4) produces a nonlinear, noninstantaneous, and
stochastic Heisenberg equation describing the evolution
of the envelope field. We note that a response function
was introduced already in a model for the Kerr effect by
Blow et at. [3]. Although the need for the attendant
noise source was anticipated by these authors, they did
not indicate where it should be inserted.

We model the noise background as a collection of lo-

calized and independent harmonic oscillators:

W (u
rn(z, r) = ~ (dt (z)e' + H.c.),

0 7r

where the spectral weighting function W(ur) is, as yet,
unspecified. The operators d (z) and dt (z), which are
independent from the envelope, obey the commutation
relation [d (z), dt, (z')] = b(~ —ur')b(z —z'). All other
commutators involving these operators vanish. Note that
the material oscillators at different locations are com-
pletely decoupled. This is consistent with a picture where

nNi, is created by localized molecular vibrations. Such
oscillators are responsible for Raman scattering. Acous-
tical vibrations, which couple different parts of the wave-

guide, contribute also to the noise in the electromagnetic
field. We do not include them in our theory as they
do not lead to closed form solutions for A(z, r). Using

(7) to (10), the nonlinear index operators at difFerent lo-

cations are seen to commute at different times and, in
particular, at equal r. This allows (4) to be integrated
as if ANi, were a c number, leading to the closed form
solution A(z, r) = exp[in f&' dz' nNi, (z', r)]A, (r). Using
again (9), we can write the following input-output con-
nection:

A, (r) = exp[i8(r)] exp[i/(r)]A, (r),

where p(r) = t 1'a dr' f(r')I(r —r') is the self-phase

modulation operator and 8(r) = j& dz m(z, r) is the
phase noise added by the medium. The relative order of
A, and exp(iP) is important but the noise exponential,
which commutes with the field factors, can be inserted
anywhere. Using this solution and the input commuta-
tors we find, after some algebra (Appendix),
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[Ao(~), A, (~')] = Oi A, (v-)A, (~'),

[A, (~), A, (~')] = 6(~ —~') + 02A, (7-')A, (~),

(12)

O (1 —ita y + —ila i i8(v-) i8(v ') ) —i8(~') —i8{~)—e j e ~e, e &e e

0& —(e ' ~ 1) + e
—«o[eis(7l &

is—(r')] —is(~l is(T ))e e

where n = f(r' —z) —f(7 —r') Th. ese commutators
satisfy (6) if Oi = 02 = 0. One verifies from the identity

[e,e ]
= e e (e~ j —1), which holds if [A, B] is a

c number, that this happens when [8(~),e(~')] = ilier.

Using (10) to compute this last commutator, we find that
the spectral weighting function must be related to the
imaginary part of the Fourier transform of the response
function by

W(iv) = 4vrf"(u) & 0. (14)

(dt (z)d (z')) = 6((u —ur')6(z —z')noh(u)), (iS)

where noh(ur) = [exp(hu/kT) —1] is the Bose-Einstein
distribution. The phase noise operator then has a Gaus-
sian statistics.

Our theory differs from that of Blow et at. [3] by the
presence of the noise exponential in (ll). This factor,
which makes the theory self-consistent, has physically
observable consequences as we now show. Consider a
coherent input state ]@) corresponding to a monochro-
matic pump at the carrier frequency. One then has
A;(7.)]@) = ~I„~@) From (11), the . field autocorrela-

tion function for this state has the form (A' t (0)A, (r)) =
I„(e ' (o) e's( )) (e '~( ) e'~( )). The two expectation val-
ues can be evaluated for any response function. Recall
from (7) that e i4(0)eig(r—) e

—i4'(Ol+i4'(r) By using the
normal ordering formula (Al) with g(s) = it(f(s) —f(s-
w) j, we find

(16)
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Here f"(ur) = J'd~ ins( rid)f(r) vanishes only if f(w) is
even. Since f(r ( 0) = 0, the only possible symmet-
ric response function is proportional to a delta function.
The resulting instantaneous nonlinearity leads, as men-

tioned already, to a singular quantum field theory. Hence,
noise sources are always required to preserve the canoni-
cal structure of the theory. The Hermiticity of m requires
the positivity of f"(iv ) 0). Writing nNi, as a weighted
sum of harmonic oscillators, this condition follows from

the positivity of the damping coefficients. The inequality
in (14) is then a stability condition verified experimen-

tally for the optical field by the positivity of the Raman

gain on the Stokes side of the carrier frequency only [6].
Below, the material oscillators will be assumed in ther-
mal equilibrium:
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FlG. 1. Normalized power spectra as functions of the fre-

quency deviation from the pump for the medium described
by (18). The frequencies are normalized to the resonance.
The dashed lines were plotted after removing the noise. All

plots use the same pump intensity. Defining x = KQt/v~ and

p = I'/0 to measure the propagation distance and the width
of the resonance, respectively, we have (a) x = 0.002, p = 0.4,
kT = 0.5M; (b) x = 0.002, p = 0.4, kT = 5hA; (c) x = O. l,
p = 0.4, kT = 0.5M; (d) x = 0.1, p = 0.15, kT = 0.550.
The spectrum near the pump was removed.

On the other hand, (e 's( )e's( &) = e'& (e 's( )+' ~ )),
where this time n = f(~) —f( ~) .The expectation
value of the last exponential is computed from (1S) using
the identity (exp(X)) = exp(2(X2)) if X has a Gaus-

sian statistics with a vanishing average. We finally find

the following contribution to the autocorrelation function
from the noise source:

(
—i &(0} is(~)

)
i p—n —i J(~) (i7)

where J(w) = f " f—"(a) sin (aw/2) coth(~/2kT).
The autocorrelation function can be Fourier transformed
to give the spectrum of the radiation leaving the medium.
Figure 1 displays output spectra of a medium with a sin-

gle resonance A and with a damping coefficient r [7]. The
resulting response function is

KO~
f(~) = u(~)e ~ sin(/02 —1 /4~) (18)

gn2 —r2/4

where u(r) is the step function and K = I d7. f(~) For.
short propagation distances, one can identify in these
plots the contributions from individual low order Feyn-
man diagrams (Fig. 2). Expanding (16) and (17) to low-

est order in l, we find that the noise expectation value

grows linearly with t whereas self-phase modulation con-
tributes only to second order. The short distance output
spectrum is then dominated by the new noise source in-

troduced in our theory. The corresponding processes are
shown in Fig. 2(a) (Stokes) and Fig. 2(b) (anti-Stokes).
At low temperatures such that kT ( hA, the process of
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(a)

(c)

to —Q

I

to + Q
4L

when studying the fluctuations of the electromagnetic
field. An important aspect of the model developed here is
that it provides an example of a nonlinear quantum field

theory with an analytic solution. This presents some
interest on its own as most of our physical intuition is

ultimately based on a few analytic models.
Appendix. —Write (12) as [AB, CD] = [A, C]BD +

CA[B, D], with A = e' ( ), B = e'i'i &A, (r), C = e' (

D = e'&~ )A;(r'). In writing this expression we used

[B,C] = [A, D] = 0. We have, on the other hand

[B,D] = BD(1 —e " ). This last commutator follows

from A, (r')e'&& & = e'&& )A, (r')e"~( r ), which is ob-
tained from (5) after normal ordering the exponentials.
This can be done using the formula [4]

l (
exp] dsg(s)I(7 —s)

~

=:exp] dsh(s)I(7 —s) ~:,
FIG. 2. Photon number preserving Feynman diagrams con-

tributing to spectral broadening for short propagation dis-
tances. In these figures, dashed lines represent matter excita-
tions with frequencies close to a resonance of the medium [fI
for a medium described by (18)]. Processes (a) and (b) are
absent when m is neglected.

Fig. 2(b), in which a photon gains a quantum of energy
from the waveguide, is discouraged due to the absence of
thermal medium excitations. In this case, most photons
scattered from the pump end up with a lower frequency.
As Fig. 1(b) shows, partial symmetry of the spectrum is
restored at higher temperatures. Note that the spectra
computed with the theory in [3] (dashed lines) are sym-
metric. This is readily understood for short propagation
distances since in this case the lowest order Feynman
diagram contributing to spectral broadening is shown
in Fig. 2(c). Clearly this process, in which the medium
participates only as the mediator of the nonlinear wave
mixing, produces as many photons on the Stokes and
anti-Stokes sides. The short distance output spectrum is
then qualitatively different when the noise of the medium
is neglected as in [3]. This provides a clear experimental
test for our model. The plots 1(c) and 1(d) show spectra
at longer propagation distances where the contribution
of individual Feynman diagrams can no longer be distin-
guished. The growth of secondary Stokes and anti-Stokes
waves is obvious and is enhanced by a sharper medium
resonance. The medium noise is less important in that
regime.

In this Letter we presented a model for which a
medium-induced nonlinearity requires a I angevin noise
source to preserve the canonical structure of the theory.
This phase noise is experimentally observable from the
preferential growth of Stokes waves at low temperature.
We suggest that noise sources are a general feature of
nonlinear quantum optics that should be kept in mind

(A1)

where h(s) = e&&s) —1. Here: F(Ai, A,):means that in
the Taylor expansion of F, all creation operators are on
the left of the annihilation operators. The commutator
[A, C], which we try to determine, is left over in (12).
The commutator (13) is obtained in a similar way.
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