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Three-Loop Equation of State of QED at High Temperature
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We present the three-loop contribution (order e') to the pressure of massless quantum electrodynamics
at nonzero temperature. The calculation is performed within the imaginary time formalism.
Dimensional regularization is used to handle the usual, intermediate stage, ultraviolet and infrared
singularities, and also to prevent overcounting of diagrams during resummation.
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The equation of state (EOS) of relativistic quantum
electrodynamics (QED) at nonzero temperature (T) and
chemical potential (p, ) is of relevance in several astro-
physical contexts [I—4]. It was obtained by Akhiezer
and Peletminskii to the third order (e-') more than three
decades ago, while the fourth order (e4) contribution
at T = 0, but nonzero p„, was then obtained for QED
and quantum chromodynamics (QCD) by Freedman and
McLerran [2] and by Baluni [3]. However, to date, the
analogous 3-loop calculation for T 4 0 has, to our knowl-

edge, not been performed, presumably because of the
greater technical difficulty in dealing with overlapping di-
agrams in the presence of Bose-Einstein and Fermi-Dirac
statistical factors.

In this Letter we present the order e~ contribution to
the pressure of a QED plasma at T 4 0 (and ~ = 0), but
for the case of massless electrons. This will also be the
leading contribution at high temperature for realistic QED
with massive electrons.

Our motivation for this high order calculation is
twofold. First, for phenomenological applications it is
helpful to know how big corrections to the lower order
EOS can be. Second, it serves as a prototype to illustrate
techniques which may be used to perform similar calcu-
lations in QCD. Recall that in QCD asymptotic freedom
suggests [5] that at high T and/or density hadronic matter
will transform into a weakly interacting quark-gluon
plasma, a novel state of matter that is currently under
intense study [6]. The EOS for the high-temperature
phase of QCD was determined by Kapusta to third order
(g3) [7], while Toimela [8] has extracted also the g4 In g
piece. However, the normalization of the logarithm in the
last term requires knowledge of the 3-loop contribution
which is still lacking.

Returning to QED, let us introduce our notation and
conventions. We employ the imaginary time formalism
whereby the energies take on discrete Matsubara values,

qo = inn T, n being an even (odd) integer for bosons
(fermions). Dimensional regularization is used to handle
the ultraviolet (UV) and infrared (IR) singularities which
occur at intermediate steps. The D dimensional vector,

Qt, = (qo, q), is contracted with a Minkowski metric,
Q2 = qo

—
q . In order to keep track of the even

(odd) Matsubara frequencies, we introduce the following
notation:

d" ~q
[dq]= T X. D

qo.e Ven .

[dq) =—T g (2tr)

The f'ermions are kept as four-component object~,
Tr(y„y„) = 4g~„, and for simplicity we work in the

Feynman gauge so that the gauge propagator is g„,, g'E-".

Renormalization via minimal subtraction ensures that the

coupling constant is gauge-fixing independent, and hence
so will then be our final answer for the pressure [3].

Before discussing the 3-loop calculation, let us summa-
rize the lower order results for the pressure of QED with

W massless Dirac fermions:
P = P() + P~ t- Pg + 0 (e I . (1]

where

Po= T 1+ -—X
4$ 4

e 1' A' ' '

Pg =-
12~

The ideal gas contribution Po is determined by the one-

loop diagrams in Fig, 1. The first correction, P. , i»

given by Fig. 2. The nonanalytic (e'-)-"-' contribution,
P~. is a consequence of Debye screening [9]. In a per-

turbative expansion using bare propagators one discov-
ers powerlike IR singularities in diagrams such as Fig. 3„
corresponding to the n = 0 Matsubara frequency of the

I KJ. l. Contribution to the ideal gas pressure. The wavy linc
represents the photon propagator.
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FIG. 2. The two-loop diagram.

be performed first, we may separate out any finite number
of terms from the sum, and for these we may use DR to
deduce a zero contribution. This explains why the second
term in (6) may be dropped in DR, and we will exploit
this fact further below.

Consider now the 3-loop diagrams. The order e4N

diagrams are shown in Figs. 4 and 5. However, for
massless fermions, the Ward identity Zt ——Z2 implies the
mutual cancellation of the counterterm diagrams. Thus
the sum Gt + G2 (Fig. 4) is UV finite. After performing
the spinor traces, some algebraic manipulation, and the
use of scaling arguments such as in [11],we obtain

photon propagator. The diagrams in Fig. 3 are singu-
lar because the electric polarization operator behaves as

Iloo (qa, q ~ 0) = m2, where m is the electric screening
mass to lowest order. Surmning the infrared divergent
pieces of the diagrams in Fig. 3 yields

T ~ d3q (—1)~ ~ m2 l
(2~)' S & q')

[2(1 —2"-' )H,4NT3D —8
Ijt,

8—2D

+ (20 —3D)H2]

+ (D —2) [2Hs —f2(ft —bt) ] .

Here p, is the mass parameter of DR and e is the dimen-
sionless, renormalized coupling. We have scaled all the
momenta by I/T so that the integrals are dimensionless
(i.e., T = 1 there) and are defined by

m'&
ln 1+

2 (2~)'
m

gl 2 (6) 1
BQl

Although (6) is UV and IR finite and may be evaluated
directly to give (4), it is helpful to reconsider it using
dimensional continuation. Then [10] the second term in

(6) vanishes and the first term gives

T t' I —D 't & m )—II
2 ( 2 ) (4')

f (dQ)

[dQ dP dK]
K Q P (K + Q + P)

which is Ps as D ~ 4. Note that in dimensional regu-
larization (DR) each single integral of the series in (5)
vanishes. Nevertheless, the result in (6) is physically cor-
rect and mathematically nonzero, because the sum in (5)
must be done before the integral. This is obvious once
one starts from an expansion of the pressure in terms of
the full propagator [1—3]. Though the infinite sum must

(a)

FIG. 3. Diagrams contributing to the e' plasmon term. The
self-energy insertions are IIOO(0, 0), and the photon is static,
q() = 0. FIG. 4. The order e4N contributions: GI and G2.

2399



VOLUME 73, NUMBER 18 PH YS ICAL REVIE% LETTERS 31 OCTOBER 1994

H2 =

H3 =

{dKdR dS]
K2R2S2(K + R + S)

{dK) [dQ dP] (P . Q)
KP Q (K+Q) (K+P)

later in the definition of the temperature dependent
coupling e (T). The new integral is (8) is

[dQ] {dKdR) (K . R)
H4 =

Q4K'R'(Q + K) (Q + R)

The integral Hi occurs in the 3-loop evaluation of the
pressure in @ theory [12], and H2, being simply the
fermionic analog of Hi, may be analyzed in a similar
manner. The only new integral left is H3. Let us,
however, first discuss the order e4N2 diagrams. The
UV singularity of G3 [Fig. 6(a)] is canceled by the
photon wave function renormalization through diagram X]
[Fig. 6(b)]. Diagram G3 also has an IR singularity which
is precisely the first term of the series in Eq. (5). Since
this term has already been considered there, it should be
subtracted from G3 to avoid overcounting. However, as
discussed earlier, this single term by itself vanishes in DR,
so double counting is automatically avoided. We have

e N2
G3 T3D —8 8 —2D 16

4
D —4x (D —4) b2f, + H2 + 4H4

4

H3=J]+K] ~L;

The piece L~ contains integrals which can be performed
analytically while K& is an integral similar to Hi. The
difficulty lies in

d KdDQd P
D il 8+ (K ) BP (P ) 6, (Q ) Nt~)l1qI,(2~)"'-"

with

x (Nl,„+ np„) p ( —cr)S(o, y) .
rr. v=- ~ j

We now sketch our evaluation of H3 (7j. The fre-
quency sums are first rewritten in terms of contour in-

tegrals as in [2,3], but we do not separate the T =—0 and
T 4 0 parts before going to the "phase-space" representa-
tion. In this way we obtain

and

where

X~ = —(Zs —1)e N(D —2)T p, f~

I4-D
X (2b, —f, ) (~)

and

P
S(tr, y) =-

K QK Q+P (oK+yQ)

Ng„= e' + l

e N
Z3 —1 =

6~2 (D —4)

to leading order. The factor (T/p, )" will generate a
e4 ln T/p, term on expansion, but this will be reabsorbed

The integral J] is UV finite but has a collinear singularity.
We use the method of Sudakov decomposition, a tech-
nique which is well known at T = 0 (see, for example,
[13])but appears to be novel in this context, to extract the

pole and the finite part of this integral. The details are
lengthy and will be presented elsewhere [14]. Here we
only state the final result,

1287&4 D —4

FIG. 5. Ultraviolet counterterm diagrams for Fig. 4.
FIG. 6. (a) is the e'N2 contribution (G&), while (b) is the
corresponding counterterm diagram Xl.
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where

p~ = 0.71.6 766 7897 ~ 10

ct = (3.936 ~ 5) x 10 '.

The residue r~ is obtained as a finite two-dimensional
integral which we have then evaluated numerically to
high precision (relative error 10 ' ), and the pole in J~
above cancels with the other poles contributing to the sum
of G~ + Gz (again to the same precision). For H4, the
analysis is similar to H3 but more tedious because of the
doubled propagator I/(Qz) z.

Collecting all the pieces, we obtain

P4 6) + G2 + G3 + X)
e4T4 e4T4

(0.4056) —N
7r

0.4667 5 T l
X + ln-

6n X 288 p)

and potential applications of (10) to a later stage [14],we
mention that the unknown e5 contribution in Eq. (10) is
a higher order analog of the e plasmon term and is also
calculable [15].

We conclude by summarizing the steps leading from
the Feynman diagrams to the result (10): (i) algebraic
reduction of the integrals, (ii) evaluation of frequency
sums by a contour-integral algorithm, (iii) evaluation of
the final phase-space-like integrals, in particular using the
method of Sudakov variables for UV finite integrals with a
collinear singularity, and (iv) use of dimensional regular-
ization to simplify the prevention of double counting dur-

ing resummation. We hope that the methodology adopted
here opens the way for a similar, and long awaited, calcu-
lation in QCD.

We thank J.P. Blaizot, H. Contopanagos, L.D. McLer-
ran, J-Y. Ollitrault, D. K. Sinclair, A. R. White, and
C. Zachos for discussions. We also thank P. Arnold and
C. Zhai for pointing out errors in our original results
and for communicating with us their calculation of the
three-loop free energy of Yang-Mills theory [16].

The pressure up to and including order e4 then follows
from Eqs. (1)—(4) and (9). It may be rewritten in terms of
the (one-loop) renormalization group invariant coupling,
at the energy scale T, given by

e'N T&
e (T)=e2 1+ ln-

6m2 p, )

Defining u(T) = ez(T)/4n. we finally arrive at

~' / 7 i 5~' u(T)N 2n
I

1 + —N I— +T4 45 & 4 ) 72 n 9+3

u(T)N "
X

/0. 658 ~ 0.006+
N

—0.757 ~ 0.004
~)

x + 0(u(T) / ). (10)

This (10) is our expression for the three-loop pressure
of QED with N electron flavors at high temperature; if
m, is the (zero temperature) electron mass, we require
m, /T « u(T) so that mass corrections are subleading
to the terms displayed in (10). Real world QED cor-
responds to N = 1 and in the regime where u (T) « 1,
the three-loop contribution is found to be indeed a small
correction. However, one should note that since pertur-
bative QED is not asymptotically free, the effective cou-
pling u (T) increases with temperature (albeit slowly) so
that at sufficiently high temperatures the fourth order con-
tribution becomes relevant. Deferring further discussion
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