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Polarization and Anisotropy of the Microwave Sky
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We study the polarization-polarization and polarization-temperature correlations in standard adiabatic
scenarios for structure formation, Temperature anisotropies due to gravitational potential wells and
oscillations in the photon-baryon-electron fluid on the surface of last scattering are each associated with
a correlated polarization pattern. While the "correlated part" of the polarization has an rms of only a
third of the total signal, it may still be measurable by mapping a large area on the sky. We calculate
the expected signal to noise ratio for various measures of the polarization in a hypothetical mapping
experiment suck as those now being planned.

PACS numbers: 98.70.Vc, 98.80.Cq, 98.80.Es

Since detection by the Cosmic Background Explorer
satellite of anisotropies in the cosmic background radia-
tion (CBR) [1],attention has focused on obtaining higher
resolution measurements, and ultimately maps of the tem-
perature anisotropies on the sky. The angular correla-
tions and statistics of the anisotropy pattern will yield
valuable clues as to the formation of large scale struc-
ture in the Universe —whether the perturbations were adi-
abatic or isocurvature, Gaussian or non-Gaussian, whether
there was a significant gravity wave component, or if cos-
mic defects were involved. However, there is substantial
degeneracy among the predictions of different theories
[2—4], and it is worth asking whether any additional in-

formation that might further discriminate between theories
could be extracted from the microwave sky.

The idea that the polarization of the microwave sky
might provide such additional information is not new

(see, e.g. , [5—8]), and some experimental limits have

already been set [9—11]. The expected level of linear
polarization is low (typically 5% of the anisotropy), but

with experiments currently being planned to map the sky
temperature to an accuracy of 3 p, K per pixel, one is

clearly close to the level required for a measurement.
In this Letter, we extend previous work [7] to consider

the temperature-polarization cross correlation function

(QT). (Throughout, T refers to the temperature anisotropy
and Q and U are the Stokes parameters which describe
the polarization [12].) We discuss the advantages this
has as an observable when the detector noise per pixel is

larger than the signal and show that it may be measurable
in experiments with large sky coverage such as those
currently being proposed.

%hy should the polarization of the sky be correlated
with the temperature anisotropy7 The linear polarization
produced by Thomson scattering is proportional to the

quadrupole moment of the incident photon phase space
density. At redshifts )1300, the photons, baryons, and
electrons constitute a tightly coupled fluid, in which
the quadrupole is vanishingly small. But as photons
decouple, fluctuations in the temperature, fluid velocity,

and gravitational potential about a scattering electron lead
to a quadrupole in the radiation incident upon it. The
dominant effect results from a converging or diverging
velocity field which produces, through the Doppler effect,
a quadrupole of order ~Vv, . ——v6„,with v the mean
free time for Thomson scattering, 6„and v,. the density
and velocity perturbations.

Consider a potential well on the "surface of last scat-
tering, "

appearing to us as a cold spot on the microwave
sky. As it enters the horizon, gravitational forces cause
the surrounding matter to fall into the well [Fig. 1(A)].
The converging velocity field induces a local radiation
quadrupole at points on the edge of the well, causing an

excess of scattered light polarized radially about the cold
spot [Fig. 1(B)].Similarly, a potential hill (a temperature
hot spot) produces a diverging velocity field and thus a
tangential polarization pattern. After a radiation pertur-
bation enters the horizon, it oscillates acoustically, with

the temperature and velocity field oscillating out of phase.
At a fixed time (decoupling), the phase of the oscillations
varies as a function of wavelength, so the relation between
temperature and polarization alternates sign as one moves
to smaller scales (Fig. 2).

The gravitational potential also creates a quadrupole.
A point on the edge of a potential well sees less energetic
photons coming from the well, which leads to a radially
polarized pattern about temperature cold spots. This

FIG. l. Converging velocity flows cause a radial polarization
pattern. The velocity field in the box in (A) is enlarged in ('B)
to show the induced polarization.
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FIG. 2. QT correlation function in units of (Tr(ru, where IrT2

is the temperature anisotropy variance and o.
& is the total

polarization variance. Shown are results for a universe with
standard recombination and a fully ionized universe with no
recombination.

(T(q)T(e, )) = g(2l + 1)CIrP((cos 8),

(Q(q)T(e, )) = cos2pg(2l + 1)C, P,'(cos8), (2)

effect has the same sign as the convergent velocity field
discussed above, and presumably both contribute to the
negative tail in {QT) on large angular scales. Primordial
gravity waves also lead to anisotropy and polarization in
the CBR [13],which may have a distinct (QT) signature
on large angular scales. We shall investigate this in
future work.

To calculate the two-point correlation functions, we
evolve the photon distribution function f(x, p, t) [14]. We
assume the initial perturbations are adiabatic, pure grow-
ing modes. Here we study an 0 = 1, 0& = 0.05, and
h = 0.5 cold-dark-matter dominated universe with stan-
dard thermal history and a universe with no recombina-
tion (an extreme example of a reionized universe).

The initially Planckian, unpolarized photon distribution
function is evolved forward using the general relativistic
Boltzmann equation for radiative transfer with a Thom-
son scattering source term. For simplicity we consider
only scalar perturbations. In this case one needs to evolve
only two transfer equations, for the components of f cor-
responding to Stokes' parameters I and Q [15]. These
equations are written in terms of brightness functions,
5' —= 48f;/(To 8f/BTo), where To is the mean CBR tem-
perature, f is the unperturbed Planck distribution, 8f; is
its first order perturbation, and i = T, P.

The computational scheme is that of Bond and Efs-
tathiou [7,14]. We expand the cosmological perturbations
in plane waves and the brightness functions in spherical
harmonics, converting the transfer equations to a hierar-
chy of ordinary differential equations.

Once evolved to the present epoch, the Legendre
expansion coefficients b, I (i = T, P) are used to construct
the temperature and polarization correlation functions

(U(q)T(e, )) = sin 2$ g(2l + 1)C, P, (cos8), (3)
l~2

(Q(q)U(e, )) = sin 4$ g(2l + 1)C, P, (cos8), (4)
1~4

(Q(q)Q(e, )) = g (2l + 1) C, P, (cos 8)

+ cos4$ g (2l + 1)CI PI (cos 8), (5)
1~4

where (8, kt2) are the usual spherical polar angles, q =
(sin 8 cos I/I, sin 8 sin (t), cos 8), the axes used to define the
Stokes parameters are e„ande„,and

CI = k dk 5( (6)

kdkA (7)

C = g(21' + I) f I dk2 *(1
l —2!

(I + 2)!
all'

C = '
g(21' + 1)f k dkll, k d~p.

'(l —4)!
(l + 4)' ll'

The constants aII and a«are given by aII =
f, dx PI(x)Pt (x) and a(t = J, dx Pt(x)PI (x) which
have simple closed form expressions. In deriving Eqs. (4)
and (5) we further assumed 8 « 1.

Figure 2 shows (QT) for (t) = 0. The cos2(tl depen-
dence of (QT) means that it must vanish at zero angular
separation in order to be single valued. The scale of the
polarization pattern is limited by the photon mean free
path at last scattering, of order the horizon at that time—
which subtends an angle of 2' with standard recombina-
tion, and 6' for a fully ionized universe.

If the primordial perturbations are Gaussian, so are
the temperature and polarization fields. In this case the
statistics are completely described by two-point functions.
We have constructed realizations of the microwave sky
using the small angle approximation, in which spherical
harmonics are replaced by plane waves,

T(8) g T(n) 12IIn a/8 (1o)
n

and similarly for Q and U, where 0' is the angular size of
the map, and the wave number n has integer components.
Each Fourier mode n of the temperature anisotropy field
T is allocated a random Gaussian-distributed, complex
variable g)(n) with zero mean and unit variance (g;ft) =
1, according to T(n) = (Ct )') 2f) (n), where I = (2n. /nO).
A second independent random variable $2 is used to define
the Q Fourier modes:

Q(n) = [Qc(n)g)(n) + QU(n)fq(n)]cos 2P„, (11)

where Qc(n) and QU(n) are chosen to reproduce the (QT)
and (QQ) correlation functions and P„is the usual polar
angle of the vector n. The U modes are allocated in a
similar way.
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The polarization field is therefore a sum of two com-
ponents, which are, respectively, correlated, Qc(8), and
uncorrelated, QU(8), with the temperature anisotropy.
Figure 3 shows the correlated component overlaid on the
temperature field. The length of each vector is propor-

1

tional to [Qc(8) + Uc(8)]2 and the orientation is given
by 2P = tan '(Uc/Qc). There are clear correspondences
between the temperature and the correlated polarization.
The most obvious features are seen around hot and cold
spots in an otherwise uniform background, with radial and
tangential polarization patterns, respectively. Note that
the figure only shows the correlated component of the
polarization the —effect of including the larger uncorre
lated component is to mask almost entirely aII obvious
correspondences with the temperature map.

The correlated part of the polarization is a small part of
the total signal. Figure 4 shows the power spectra of the
temperature-correlated polarization (QcQc) and the total
polarization (QQ). The variance of the total polarization
o.~, corresponding to the area beneath the curve, is
approximately 7 times that of its correlated component
o.g, . (The ratio for the constantly ionized universe
is similar. ) From a measured map of the temperature
anisotropy, it is straightforward to construct a map of the
correlated part of the polarization, as we have done in

Fig. 3. Because the uncorrelated part of the polarization is

large, the map of the correlated part is a useful predictor of
the total polarization in only a statistical sense. A one-to-
one correspondence between features in the temperature-
correlated map and those in the total polarization is not
expected. However, one is much more likely to find a

p =
1 exp

I2 ( g- g)l'
4' f2)

while the probability of finding an no. peak by looking
1

at a random point in the sky is e "t'/(2vro. g):. Thus,
for example, the odds of finding a lo.~ peak in the total
polarization at a 3o.~,. peak in the correlated polarization
are 3 times greater than at a random point. If degree scale
temperature anisotropy maps become available, it may be
useful to construct the map of correlated polarization (in
a given theoretical scenario) and use it as a guide to the
"best" points at which to observe the polarization.

Although one expects the correlated polarization to be
small, one can attempt to measure (QT) directly. This
could prove easier than measuring (Q2) because it is
less susceptible to noise in the polarization measurement.
Consider a detection obtained from N measurements of the
polarization Q; + o.&, where pro is the detector noise. If
the measurements are sufficiently isolated from each other
to be uncorrelated, then the measured variance will be

Q Imeas
= og

where o.~ is the true polarization variance. Whereas, the
measured temperature-polarization correlation will be

peak in the total polarization at a peak in the correlated
map than at a random point in the sky.

This statement can be quantified. The probability of
finding an no-~ peak in the total polarization if one is at
an mo. ~,. peak in the correlated polarization is

1
—(no g

—rnog, ).
2(og og )

where o.T is the variance of the temperature anisotropy.
(We have assumed that the noise in the temperature
anisotropy is negligible. ) In the limit of large detector
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FIG. 3. 1 x 1 temperature map (smoothed with a Gaussian
beam with FWHM of 10') with the correlated component of the
polarization overlaid.
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FIG. 4, The power spectra (smoothed on a scale of 10')
of the total (dashed line) and temperature-correlated (solid
line) polarization in a universe with a standard thermal

history normalized to the COBE satellite measurement of the
temperature variance with 10 smoothing.
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2
theory

Qc Q~ - = trg, —
N l. trg + trnf]'. (15)

noise, the error in measuring Q grows as trD while
the error in QT grows as o.ti, so that it becomes more
advantageous to search for QT correlations.

If one has a full sky temperature map but only a sparsely
sampled polarization map, the noise in (QT) can be re-
duced by including all of the temperature information.
For example, we can calculate the expected correlation
between the polarization at a given point and the tem-
perature in a ring of radius 0 about that point. Since

(QT) is proportional to cos 2p, if we define T(8) =
2 X

f d P T(8, P) cos 2P, then (QT(8)) = (QT(8, P = 0'))/2.
The error in measuring (QT(8)) is reduced significantly
because T(8) is an average over a number of uncor-
related patches. Thus, the variance in T(8), (T2(8)) =
4—IdP cos 2P Cr(8$2 —2cos @), is much smaller than
the variance in the temperature anisotropy itself. For a
ring of radius 8, T is a weighted average of I —n 8/8,
independent patches (where 8, is the temperature correla-
tion angle) and its variance is (T (8)) —trT/2I Assu. m-

ing the rings about the polarization measurements do not
have substantial overlap, this increases the signal to noise
of (QT(8)) by a factor of Ql/2 over that of (QT(8)).

Alternatively, one can test the correlated polarization
map (constructed as described above) by measuring the

theory
weighted average (Qc Q). For N uncorrelated measure-
ments of the polarization,

Given - a fixed integration time, the optimal obser-
vation strategies for measuring (QT) and (QQ) differ
significantly. If the noise o-o is statistical, i.e., inversely
proportional to the square root of the time spent in making
the observation, then the best strategy for measuring the
polarization variance is to spend enough time at each
observation such that o-D is comparable to sr~ before
moving on. The optimal strategy for measuring (QT(8)),
however, is to maximize the number of observations, inde-
pendent of the noise level, i.e., to map out the polarization
over the whole sky. Such a strategy might most easily be
realized in conjunction with a full sky anisotropy mapping
experiment such as those presently being planned.

To conclude, the temperature-polarization correlation
provides another observable quantity which may be used
to probe the physics of the density perturbations on the
surface of last scattering. Although the magnitude of the
effect is small, we have shown that a reasonable signal
to noise ratio is within reach of projected experiments.
We intend to extend the calculations reported here to
other cosmological parameters and structure formation
scenarios, such as baryon isocurvature and defect models.
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Comparing the signal to noise of (Q ) and (Qc Q), and
using tr&, —tr&/7, one finds that if the noise is greater
than the polarization signal, o.~ ~ 1.5o.~, then it becomes
easier to measure (Qc Q) than (Q2).

Consider a hypothetical experiment which measures
the polarization with a 0.5' FWHM beam of 1000 well
separated patches on the sky. The expected polarization
for a standard recombination model is o.g = 1.4 p, K,
while the correlated polarization signal is about one-third
of this. If the noise level can be reduced to 3 p, K per pixel,
the signal to noise of the polarization variance (Q2) and
that of (Qc Q) are both about 5 to 1, while the signal to
noise of the (QT(8)) is approximately 3 to 1 on an angular
scale 0 = 1.3 . For a fully sampled polarization map the
signal to noise would improve. For the no-recombination
case, the expected noise levels are comparable to these
because even though the variance of the polarization on
0.5 is larger (= 3 p, K), the correlation angle is also larger
and fewer independent measurements can be made from
the same sky coverage. These numbers ignore any other
noncosmological sources of polarization, but on such large
angular scales one can hope that astrophysical sources,
e.g. , radio galaxies, hot gas in clusters, do not contribute
significantly.
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