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Construction of Invariant Tori and Integrable Hamiltonians
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We present a general nonperturbative method for constructing an integrable Hamiltonian that is close
to a given nonintegrable one. The existing invariant tori of the original Hamiltonian are accurately
approximated by the constructed one. We illustrate the method by applying it to apparently near-
integrable gravitational potentials for which no underlying integrable Hamiltonians are known.
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The computation of the invariant phase-space tori of
Hamiltonian systems is an important problem in many
fields ranging from plasma physics [1] and semiclassical
quantum theory [2] to stellar dynamics [3] and accelera-
tor physics [4]. Several schemes for the computation
of these invariant tori have been developed. Tradition-
ally, invariant tori have been constructed perturbatively.
This approach, which culminated in the Kolmogorov-
Arnold-Moser theorem, is limited by the tendency of
tori to change their topology abruptly as the underly-
ing dynamical problem is changed: These abrupt changes
make the required deformation of a torus inherently non-
analytic and undermine the convergence of perturbative
series. Consequently, most problems must be handled
nonperturbatively.

Recently [4—6], techniques have been developed for
nonperturbatively determining the generating function
of a canonical transformation that maps the invariant
tori of an integrable Hamiltonian into approximately
invariant tori of a given Hamiltonian. Approaches, such
as these, that are based on generating functions can
be argued to be inherently superior [5] to ones that
directly construct approximate invariant tori. However,
in their simplest form [4,5] they are liable to break down
when the given Hamiltonian is very far from any known
integrable one. The method described here overcomes
these difficulties by augmenting the generating function's
canonical transformation with a point transformation. We
also describe how approximate invariant tori constructed
on a grid of values of the actions enable one to fit an

integrable Hamiltonian to any given one in such a way
that any invariant tori of the given Hamiltonian are also
invariant tori of the fitted Hamiltonian.

Tailor made a-ction-angle coordinates. In ou—r
scheme, invariant tori in the phase space of a known
integrable "toy" Hamiltonian Hr are mapped to the phase
space of a given "target" Hamiltonian H; we employ the
convention that primed variables relate to the tori of H,
while the unprimed ones correspond to those of HT. The
transformation between the ordinary phase-space coordi-
nates (x, p) and the action-angle coordinates (J, 8) of Hr
is known. Our final product is an integrable Hamiltonian
Hp(J') that closely approximates H and shares with H
whatever invariant tori H may possess.

The scheme consists of three basic steps [5—8]: (i) con-
struct tori, labeled by actions J', that are approximate
invariant tori of H, (ii) construct consistent angle coor-
dinates 8' for the created tori, and (iii) generalize steps (i)
and (ii) for values of J' that do not correspond to invariant
tori of H.

We illustrate our approach by applying it to the
logarithmic potential

(, y'
4(x, y) = —ln x + —+ R,')'

where R, = 0.14 and q is varied in the range (0, 1].
This represents a nonaxisymmetric planar gravitational
potential, such as that of an elongated galaxy [9]. A
typical (x, x) surface of section is shown in Fig. 1. Orbits
belonging to two major orbit families dominate Fig. 1:
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FIG. l. (x, x) section for the logarithmic potential (1) with

q = 0.8 at 0 = —0.199. Dots are integrated consequents, and
the dashed lines are curves of numerically constructed tori.

those that have a constant sense of circulation around
the origin ("loops" ) and those that have not ("boxes");
their invariant curves circulate around (x, x) = (0.4, 0)
and (0, 0), respectively. Similar orbits are supported by
potentials whose Hamilton-Jacobi equations separate-
the so-called Stackel potentials [9,10]. A third, minor,
family of orbits generates the pair of islands that is
apparent toward the edge of the surface of section. These
orbits may be considered to be trapped by a 2:3 resonance
in a perturbed Stackel potential. As q is decreased from
unity, and the potential becomes more elongated, more
and more of the phase space is occupied by similar
minor families, whose members appear to be trapped by
resonances [11].

By mapping the tori of a Stackel potential, one could,
in principle, recover the invariant tori of both major orbit
families from a single toy Hamiltonian HT. Ho~ever,
since analytic expressions are not available for the angle
variables of Stackel tori, it is more convenient to obtain
the box and loop tori as images of the tori of two different
toy Hamiltonians, whose orbits topologically resemble
boxes and loops; we stress the fact that quantitatively
they need not resemble H closely. Specifically, we obtain
box tori from the two-dimensional harmonic oscillator and

loop tori from the isochrone Hamiltonian

p', )
H, = —li„'+

b+ b2+ r —rp

(2)

S(8,J') = 8 . J' —i g S„(J')exp(in . 8),

where k, b, and ro are parameters and (r, p) are planar
polar coordinates.

In the simplest version of our scheme [5], we seek a
generating function S(8,J') of the form

that directly maps the tori of Hq into those of H(). The
toy and target actions and angles are related by

J = AS(H, J') /AH, O' = AS(H, J')jAJ'

The Levenberg-Marquardt algorithm is used to find the
coefficients S„ that minimize the variation of 0 over the
trial torus of given J'. If H has an invariant torus J', H
will be constant on the final torus to within the errors.
The parameters I-, b, rp, etc. , that define the toy potential
are optimized together with the S„.

Generating functions of the type (3) are insufficiently
general for many problems, and before mapping a toy
torus with such a generating function, it must first be
distorted by an appropriate point transformation [6]

I RXX~X, p;= I p,
RX;

This transformation is designed to distort the toy orbit into
the same general shape as the target orbit. In particular,
it should map closed toy orbits into closed target orbits
[6,12]. The tori of minor families can be obtained by
mapping around a closed orbit an HT that produces circu-
lating or liberating motion. The less the motion in the toy
potential resembles that in the target potential, the more
important is the point transformation. For example, the
box tori of Fig. 1 were obtained by mapping a Cartesian
grid into the coordinate grid of confocal elliptic coordi-
nates —this mapping distorts the rectangular box orbits of
the harmonic oscillator into the butterfly shapes character-
istic of box orbits in (1) [6]. The parameters describing
the transformations are simultaneously optimized with the

toy potential parameters and S„.
With this procedure one can produce, for any actions

J', a torus of any specified type —box, loop, or resonant
family [6,12]. Only certain tori will be useful, however.
These are (a) those on which H is effectively constant,
and (b) those which fi11 in an orderly way a region
of phase space within which orbits are either chaotic
or members of a minor family which is conveniently
treated as comprising resonantly trapped orbits. The
three dashed curves in Fig. 1 show an example of the
latter phenomenon; they show sections of three box-
orbit tori which effectively bound and slice through the
islands of the 2:3 resonant family. The entire island
zone can be filled by similar least-squares fitted tori.
Of course, these are not invariant tori of H, which here
differs significantly from the integrable Hamiltonian Hp

for which they are invariant tori. The value of Hp on any
fitted torus is defined to be the average value of 0 on that
torus.

It is instructive to compare our scheme for constructing
invariant tori with that of Warnock [4]. The latter em-

ploys a generating function of the form (3) but determines
the S„by numerically integrating an orbit from appro-
priate initial conditions, evaluating (J, ta)) along the orbit,
and then solving for the values taken by J on a regular
grid in 8; the values of nS„and J' then follow from the
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first equation of (4) on discrete Fourier transformations.
This scheme is less general than ours in that (a) it can
only yield tori that are invariant tori of H, and (b) it is
only applicable if the toy and target tori are fairly simi-
lar. When applicable, it is more accurate, however, since
with it there is no practical objection to employing all
the S with ~n~ ( N (typically, N = 30), whereas in our
scheme computational tractability demands that one set to
zero as many of the S as possible. In view of this supe-
rior accuracy, it is advantageous to combine our scheme
with that of [4]: Our scheme is first used to optimize a
point transformation and the toy potential parameters and
determine a crude generating function. Then Warnock's
scheme is used to refine the generating function with the
other parameters taken as optimized. As an example of
this approach in action, in Fig. 2 we compare fits to five
tori in the potential (1) with q = 0.9. Resonant islands
in this surface of section are too small to be visible, so
the Hamiltonian is Stackel-like. The dashed curves show
sections of tori obtained by least-squares fitting, while the
solid lines show tori constructed by Warnock's method
using the toy potential and point transformation parame-
ters returned by the least-squares fits. The computational
effort is approximately the same in both techniques for
comparable resolution [13].

To complete the target action-angle coordinate system,
by Eq. (4) one must determine the derivatives BS,/BJ' of
the coefficients S, derived above. These derivatives are
required at constant values of the parameters defining HT
and any point transformation. Since we do vary these
parameters from orbit to orbit, we have to provide a
mechanism for determining, torus by torus, the BS,/8 J' we
would obtain if we did calculate S for fixed parameters.

A convenient method [6] is numerically to integrate the
orbit from initial conditions chosen to lie on the torus J'
and substitute into the second equation of (4) the values

H(t) taken by the toy angle variables along each orbit
section. For the corresponding values of the target angle
variables we substitute

H' = 80 + eo't, (6)
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where Ho is an unknown initial phase and cu' is the orbital
frequency vector. This yields a linear system of equations
for the coefficients BS,/BJ', the initial phases Ho, and ce'.
Figure 3(a) shows the trajectories in toy-angle space of
36 orbit integrations started from different points on the
torus corresponding to the uppermost box orbit of Fig. 2.
Figure 3(b) shows the same trajectories in target-angle
space. The dots in Figs. 3(a) and 3(b) show the input
and output angles H and H', respectively, and the straight
lines in Fig. 3(b) show the associated trajectories (6).
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FIG. 2. (x,x) at q = 0.9 and H = —0.315. The points show
consequents obtained by direct orbit integration, and the lines
are the invariant curves obtained by two torus construction
algorithms.

(b)
FIG. 3. (a) Trajectories in toy angle space obtained by direct
integration of the equations of motion from 36 starting points
on the uppermost torus of Fig. 2. (b) The same trajectories in
target angle space (dots), together with the semianalytical linear
trajectories (6) (straight lines).
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Deftnt'ng Hp and applying perturbation theory —. Once
tori have been constructed and furnished with angle
variables and frequencies for a grid of J' values, it is a
simple matter to define an integrable Hamiltonian Hp for
which these are invariant tori. The value of Hp on the
created tori that approximate existing invariant tori of H
is defined to be the average value of H (i.e., Hp = H in

principle). By interpolating smoothly in J' between the
tori, we obtain all the quantities needed to define a torus
for any given J' [8] (also, cf. [14]). Since we are in a
position to specify at each grid point not only the function
Hp but its gradients cu' = BHp/8J' as well, the chosen
interpolation scheme for Hp should utilize all these values
consistently.

We define tori for values of J' that lie between
the grid points by independently interpolating the S„,
the BS„/BJ', and the variable parameters P in HT and

any point transformation —since the derivatives BS„/BJ
are at constant values of the parameters, while the S„
correspond to varying values of the parameters, the former
must be obtained by explicit interpolation rather than by
differencing the latter. [Of course, if the parameters P are

kept fixed, S and its derivatives must be interpolated self-

consistently, not independently —when approximating an

existing invariant torus of H, simply differencing an

interpolated S will usually not produce derivatives that are
consistent with (6), especially if the J grid is not dense. ]

To understand how separate interpolations can be
consistent, write S„=S„(J',P(J')). Then have

(7)

When BP/8 J' is nonzero, there should be many acceptable
solutions for BS„/BP that fulfill consistency between the

S„and their total derivatives (7). The actual solutions

are not needed; it is sufficient to know that they can be
constructed.

With these definitions the phase-space point (x, p)
corresponding to given (J', 6l') is immediately computable.
Combining this with the definition of Hp(J ) given above

completes the definition of the integrable Hamiltonian

Hp(x, p).
Given this procedure for constructing an integrable

Hamiltonian that is close to any near-integrable one, it
is natural to view the given Hamiltonian as a perturbation
of the constructed one by writing

H(J', fJ') = H (J') + BH(J', 8').

Standard secular perturbation theory [15] requires slight
modification [8], however, because BH often effectively
vanishes through much of phase space, whereas the

standard theory assumes that BH is significant also far
from trapping resonances. Also, BH is sometimes more
asymmetric in J' than assumed in the standard theory.
Figure 4 shows an example of how well a minor family
can be represented as orbits resonantly trapped by BH.

l

J

FIG. 4. A surface of section as in Fig. 1 (the v, scale has
been slightly expanded); the solid curves show islands obtained
by perturbing the numerically constructed Hamiltonian Hp(J').

In conclusion, techniques have now been developed
that enable one to construct an integrable Hamiltonian

Hp that closely fits any given Hamiltonian H. The orbits
of most nontrivial Hamiltonians fall into several distinct
families. For each significant family, one seeks a combi-
nation of a point transformation and a generating function

(3) that maps the invariant tori of a toy Hamiltonian into

approximately invariant tori of H. After fitting tori to ev-

ery family one wishes Hp to possess, a torus through an

arbitrary point in phase space can be found by interpola-
tion in the quantities which define the fitted tori.

Although results are presented here only for systems
with d = 2 degrees of freedom, the methods are imme-

diately generalizable to larger values of d. The compu-
tational cost rises steeply with d, however. %e estimate
that three-dimensional problems will require a few hun-

dred times more CPU cycles than two-dimensional ones.
The latter require usually only a minute or so for one torus

on an average workstation. Hence this machinery should

facilitate dynamical studies over a wide range of physical
problems.

*Present address: NORDITA, Blegdamsvej 17, Copen-

hagen 2100, Denmark.

[1] A. H. Boozer, Phys. Fluids 25, 520 (1982); Princeton

Technical Report No. PPPL-2082, 1984.
[2] C. C. Martens and G. S. Ezra, J. Chem. Phys. 86, 279

(1987).
[3] J.J. Binney and D. Spergel, Mon. Not. R. Astron. Soc.

206, 159 (1984).
[4] R. Warnock, Phys. Rev. Lett. 66, 1803 (1991).
[5] C. McGill and J.J. Binney, Mon. Not. R. Astron. Soc.

244, 634 (1990).
[6] M. Kaasalaiuen and J.J. Binney, Mon. Not. R. Astron.

Soc. 268, 1033 (1994).
[7] J.J. Binney and S. Kumar, Mon. Not. R. Astron. Soc. 261,

584 (1993).

2380



VOLUME 73, NUMBER 18 PH YS ICAL REVIEW LETTERS 31 OCTOBER I'f94

[8] M. Kaasalainen, Mon. Not. R. Astron. Soc. 268, 1041
(1994).

[9] J.J. Binney and S. Tremaine, Galactic Dynamics (Prince-
ton University Press, Princeton, N.J., 1987).

[10] P. T. de Zeeuw, Mon. Not. R. Astron. Soc. 216, 273
(1985).

[11] J. Miralda and M. Schwarzschild, Astrophys. J. 339, 752
(1989).

[12] M. Kaasalainen and J.J. Binney, in Proceedings for In-
tegration Algorithms for Classical Mechanics, Waterloo,
1993 (unpublished).

[13] In cases of potentials like (1), the computational cost
is significantly reduced when one uses the symmetries
of the corresponding Hamiltonian [5,6]. To be able to
employ the symmetries, we use a grid with an even
number of points in a dimension. Because of this, the
matrix element D,k in Eq. (5) of [4] is multiplied by
cos[m (x, —k)/K] in our case (K being even).

[14] R. Warnock and R. Ruth, Phys. Rev. Lett. 66, 990 (1991);
Physica (Amsterdam) 56D, 188 (1992).

[15] A. Lichtenberg and M. Lieberman, Regular and Stochas
tic Motion (Springer, New York, 1993).

2381


