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Pore interface growth and the roughness of fracture surfaces in silica glasses have been investigated

with large-scale molecular-dynamics simulations.

During uniform dilation, the average pore radius

R and the width W scale with the pore size s as R ~ s7 and W ~ s# with n = 048 = 0.03 and
# = 0.50 = 0.03. When the mass density is reduced to 1.4 g/cm?, the pores grow catastrophically to
cause fracture. The roughness exponent for fracture surfaces, @ = 0.87 * 0.02, supports experimental

claims about the universality of «.

PACS numbers: 61.43.Bn, 61.20.Ja, 62.20.Mk

Porous silica has recently been the focus of many in-
vestigations [1]. This environmentally safe material has
numerous technological applications [2]: It is used in
thermal insulation of commercial and household refrig-
erators, in passive solar energy collection devices, in par-
ticle detectors, and in catalysis and chemical separation.
(There is an exciting possibility of utilizing it as an em-
bedding framework in optical switches made of quantum-
confined microclusters [3].) Since these applications are
due to the remarkable porous structure of the system, it is
important to understand the size and spatial distributions
of pores and the morphology of pore interfaces.

In recent years, a great deal of progress has been made
in understanding the morphology of surfaces and inter-
faces. Scale-invariant surface fluctuations related to dif-
ferent growth processes have been observed in a wide
variety of systems [4,5]: vapor deposition, fluid flow in
porous media, sedimentation of granular materials, and
thin-film growth. The root-mean-square surface fluctua-
tions averaged over a distance / obey the scaling relation
[4.5]

W~ 1% 1

Recent experiments on a wide variety of materials reveal
that fracture surfaces also exhibit scaling properties em-
bodied in Eq. (1). Bouchaud, Lapasset, and Planés have
measured the same value of « (=0.80) for four different
aluminum alloys [6]. Malgy et al. have found that the
roughness exponent of cracks in a variety of brittle materi-
als is also close to 0.8 [7]. This led them to suggest that the
roughness exponent for fracture surfaces has a universal
value. Milman et al. [8] questioned the universality of the
roughness exponent by pointing out that the measurements
by Mandelbrot, Passoja, and Paullay [9] indicated a range
of values for a between 0.7 and 1, implying a correlation
between the roughness exponent and mechanical proper-
ties. Subsequent measurements by other groups have in-
dicated that the value of « is around 0.8 [6]. The univer-
sality of the roughness exponent on the nanometer scale
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is also an unresolved issue. Milman ef al. have suggested
that the roughness exponent has different values on differ-
ent length scales. Scanning tunneling microscopy data for
MgO, Si, and Cu indicate that the roughness exponent is
0.6 = 0.1 on a nanometer scale [8]. Bursill, XuDong, and
JuLin [10] have found that roughness exponents for differ-
ent samples of MgO, NiO, and BaTiOj; lie in the range of
0.7 and 1, with an average of 0.8.

In this Letter we report large-scale molecular-dynamics
(MD) calculations on amorphous silica, investigating the
growth of pores with a decrease in the density of the sys-
tem. We find that the average pore radius R and the width
W scale with the pore size s as R ~ s7 and W ~ s*. For
pore sizes below a density-dependent characteristic size,
the exponents 7 and u are 0.48 *+ 0.03 and 0.50 = 0.03, re-
spectively; for larger pore sizes, 7 = 0.38 = 0.07and u =
0.31 = 0.07. When the mass density p of amorphous sil-
ica is reduced to 1.4 g/cm?, the MD simulations reveal that
the system has reached the percolation threshold for frac-
ture. Near the critical density p. = 1.4 g/cm3, the average
size of pores grows as |p — p |77 with y = 1.89 * 0.15,
which is close to the universal value [11]. The roughness
exponent (= 0.87 + 0.02) for fracture surfaces of silica is
found to be in excellent agreement with experimental mea-
surements on different materials at mesoscopic and macro-
scopic length scales. These MD results tend to support the
conjectured universality [6,7] of the roughness exponent
even on the nanometer scale.

MD simulations for porous silica require large system
sizes because structural correlations in the system span a
wide range of length scales. The systems we have sim-
ulated contain up to 1.12 X 10° atoms (simulations up to
10° particles have been performed on the in-house Intel
iPSC/860 machine and 1.12 X 10° particle simulations on
IBM’s 128-node SPI system at Argonne National Labo-
ratory). Interatomic potentials in these MD simulations
include effects of charge transfer, steric repulsion, charge-
dipole interaction due to electron polarizabilities of atoms,
and the effect of covalent interactions through three-body
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potentials [12]. These interactions are computed with
highly efficient multiresolution schemes [13—16]. The
calculations have been performed on distributed-memory
MIMD (multiple instructions multiple data) machines us-
ing a domain-decomposition scheme [17].

MD simulations for porous silica were performed for
a wide range of mass densities from 2.2 g/cm? (normal
density) to 1.36 g/cm?® [18]. The normal-density glass
was prepared by quenching well-thermalized molten silica
at 5000 K. The molten system was cooled to 4000 K over
1000 time steps (the time step was 0.5 X 10715 s). The
system at 4000 K was thermalized for 5000 time steps.
With repeated cooling and thermalization, we obtained
systems at 3000, 2000, 1500, 600, and 300 K.

Figure 1 shows how well the MD results agree with
neutron-scattering measurements [19,20] for the static
structure factor Sy(g) and the pair-correlation function
T(r) for the normal density silica glass at room tempera-
ture. This is by far the best agreement achieved by a MD
simulation. The MD results for bond-angle distributions,
photon density of states, and dynamic structure factor are
also in good agreement with experimental measurements
[12]. Recently MD simulations were also carried out to
examine structural correlations in densified a-SiO, [21].
Above 40 GPa we observed a structural transformation
from a corner-sharing SiO, tetrahedral network to a
corner- and edge-sharing SiO¢ octahedral network. These
results are in good agreement with high-pressure x-ray
measurements by Meade, Hemley, and Mao [22].
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FIG. 1. (a) Neutron-scattering pair-correlation function 7'(r)
of amorphous SiO,. Solid curve—the MD result for a
41472 particle system; dotted curve—neutron diffraction ex-
periment (Ref. [19]). (b) Neutron-scattering static structure
factor Sy(g) of amorphous SiO,. Solid curve—the MD result
for a 41472 particle system; open circles—neutron diffraction
experiment (Ref. [20]).

The low-density MD glasses were obtained by uni-
formly expanding the normal-density glass by a factor
of 1.01-1.03 at 600 K [18,23]. Each expanded sys-
tem was thermalized for 1000 steps and then brought to
a local minimum-energy configuration by applying the
conjugate gradient method. Atoms in these low-density
glasses were assigned random velocities chosen from the
Maxwell-Boltzmann distribution centered around 600 K,
and then each system was thermalized for 1000 steps.

Figure 2 shows snapshots of pores in 1.12 X 10° par-
ticle systems at densities 1.8 and 1.4 g/cm>. The pores
begin to form when the density of the system is reduced
to 1.8 g/cm3. Further decrease in the density of the sys-
tem causes an increase in the number of pores and also the
pores coalesce to form larger entities. Pores are analyzed
by dividing the MD box into smaller cubic cells (length
~4 A) and then performing the cluster analysis of unoccu-
pied cells using the breadth-first-search algorithm [24].

The roughness of pore interfaces is examined by
calculating the width W [25],

N, 1/2
W = {I_VI— D (I} — rol — R)z} ) 2)
s i=1

as a function of the pore volume s (the number of cells
within a pore times the volume of a small cubic cell). In
Eq. (2), {r;} denote points at the interface and ry and R are
the center and radius of a pore, respectively:

1 Ns 1 N,
RR=—>DIrl-rn% rn=->rn 0
Ns; 0 0 Nu z i

i=1

0

where {r;} denote points inside a pore.

Figure 3 shows the radius R and interface width W of
pores as a function of pore volume s at a mass density
of 1.44 g/cm® Below Ins = 5.3 (corresponding to R =
46 A), the pore radius and the interface width scale as
R ~ s"7 and W ~ s, respectively [25], with exponents
n = 0.48 * 0.03 and x = 0.50 = 0.03. Within statistical
error, we find the same values of % and u for porous
silica at various densities between 1.7 and 1.4 g/cm3.
The fractal dimension of pores isd = 1/n = 2.1. Above
Ins = 5.3, the best fit for the MD results yields =
0.38 = 0.07 and u = 0.31 = 0.07, and the value of the
fractal dimension, d = 2.6 = 0.4, is consistent with the
prediction for percolating pores [11].

Snapshots of pores in Fig. 2 reveal that there is a
dramatic increase in the size of pores when the mass
density is reduced to the critical value p.. Near p., we
find that the density dependence of the average pore size
is given by

2 s%n(s) _
Say = m ~lp = pl™, (©)

where n(s) is the number of s clusters per site. The best
fit for the MD results is obtained with p. = 1.40 * 0.04
and y = 1.89 * 0.15. The latter is close to the universal
value (=1.8) for percolation in three dimensions [11].
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FIG. 2. Snapshots of two-dimensional slices of MD configurations of silica (N = 1119744) at densities 1.8 and 1.4 g/cm®. Red

and blue colors represent pores and silica, respectively.

We have also calculated the correlation length from
£2 =23 {R(s)¥s%n(s)/ 3, s®n(s). Near p., & ~ |p —
pe)™% with v = 0.9 = 0.2, which is close to the universal
value (= 0.9) for percolation in three dimensions [11].
For larger pores, the pore size distribution is found
to scale as n(s) ~ s~7 with 7 = 2.18 *+ 0.13 at various
densities between 1.7 and 1.4 g/cm®. The value of
7 is consistent with the percolation model (7 = 2.2,
Ref. [11]). The range over which the scaling relation
for n(s) applies is identical to the range for the fractal
dimension of pores, d ~ 2.6 (see Fig. 3).

In Fig. 4 we show one of the surfaces of the percolating
pores. The roughness of this fracture surface is calculated
from the height-height correlation function g(o) [26],

\1/2
8(@) = ([h(y + yo.z + 20) = h(yo.2)F) . (5
o=+,
where h(y,z) is the highest vertical coordinate at the
point (y,z). Figure 5 shows that the MD results for

2.0 T[T
L __OG'Q-b 4
1.5 In R O.
Qy~n

L o~ g _
1.0 |- -
In W |

05 —
0.0 PO T ST U VT S U U S ST W N SN T WY S O U WA S
0.5 1 1.5 2 2.5 3

Ins

FIG. 3. Variations of the average pore radius R (open circles)
and width W (open squares) with the pore size s in silica
at a density of 1.44 g/cm® Solid and dashed curves are
least squares fits below and above Ins = 5.3 (corresponding to
R = 46 A), respectively.
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g(o) are well described by the relation g(o) ~ o¢,
with « = 0.87 = 0.02 for ¢ < 100 A. We have also
calculated the structure factor S(k) = (h(k)A(—k)), where
h(k) is the Fourier transform of the height fluctuation
h(y,z) — (h(y,z)) [27,28]. The inset in Fig. 5 shows that
S(k) scales as k=%, with 8 = 3.7 + 0.2. The exponents a
and & are consistent with the relation § = 2a + 2 [27].
Experimental measurements on bakelite, concrete,
steel, and aluminum alloys indicate that the roughness
exponent « has a universal value 0.8 [7]. (Recent atomic
force microscopy study of the heteroepitaxial growth

FIG. 4. Snapshot of a fracture surface resulting from a
percolating pore in silica glass at a mass density of 1.4 g/cm>.

Magenta color represents the pore region.
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FIG. 5. Height-height correlation function (open circles) ver-
sus the in-plane distance o for the fracture surface shown
in Fig. 4. The solid curve is the best fit g(o) ~ o* with
a = 0.87 = 0.02 for 0 < 100 A. The inset shows the struc-
ture factor S(k) (open circles) and the best fit (solid curve)
S(k) ~ k=% with 6 = 3.7 = 0.1.

of CuCl on CaF, [29] and simulations of random fuse
models [30] and a two-dimensional Lennard-Jones system
[31] also obtain @ = 0.8.) The MD results for the rough-
ness exponent agree with experimental measurements,
thus lending further support to claims that the roughness
exponent of fracture surfaces is a material-independent
quantity. Furthermore, the MD results indicate that the
universality of the roughness exponent may prevail even
at length scales =10 nm.

In conclusion, large-scale MD simulations reveal that
during uniform dilation of silica glasses pores are “all
skin and no flesh” (R ~ /s and W ~ /s) [32]. When
the density of the system is reduced to 1.4 g/cm3, the
catastrophic growth of the largest pore causes fracture in
the system. The roughness exponent of resulting fracture
surfaces is close to the experimental value (0.8) for many
ductile and brittle materials.
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FIG. 2. Snapshots of two-dimensional slices of MD configurations of silica (N = 1119744) at densities 1.8 and 1.4 g/cm?. Red
and blue colors represent pores and silica, respectively.



FIG. 4. Snapshot of a fracture surface resulting from a
percolating pore in silica glass at a mass density of 1.4 g/cm?,
Magenta color represents the pore region.



