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Periodic Orbit Theory of Diffraction
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An extension of the Gutzwiller trace formula is given that includes diffraction effects due to hard

wall scatterers or other singularities. The new trace formula involves periodic orbits which have arcs
on the surface of singularity and which correspond to creeping waves. A new family of resonances in

the two-disk scattering system can be well described which is completely missing if only the traditional
periodic orbits are used.
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The Gutzwiller trace formula [1] is an increasingly pop-
ular tool for analyzing semiclassical behavior. Recently,
it has been demonstrated that using proper mathematical
apparatus, like Gutzwiller —Voros [2] zeta functions, cy-
cle expansions [3],or quantum Fredholm determinants [4],
the trace formula can successfully predict individua1 reso-
nances of open scattering systems [5];it is possible to com-
pute systematic it corrections [6] and to extend the formula
for systems with regular domains [7]. The physical con-
tent of the trace formula is the geometrical optical approx-
imation of quantum mechanics via canonical invariants of
closed classical orbits. This approximation is very accu-
rate when periodic orbits sufficiently cove the phase space
of the chaotic system. This is not the case when the num-

ber of obstacles is small or their distance is large compared
to their typical size. In such cases it is very important to
take into account the next-to-geometrical effects.

In this Letter we study how the geometric theory of
digraction (GTD) for hard core potentials can be incorpo-
rated in the periodic orbit theory. Such a problem occurs
where the wavelength of a quantum mechanical (or optical)
wave is very large compared with the spatial variation of
a repulsive potential, e.g. , at the boundaries of microwave
guides, optical fibers, superconducting squids, or circuits
in the ballistic evolution of electrons, i.e., in most of the
devices used for so-called macroscopic quantum mechani-
cal (or optical) experiments. First we summarize from the
classical papers of Keller [8] how the Green's function in

the shadowed regions of configuration space can be com-

puted by the concept of GTD. Then we incorporate the
periodic rays with diffracted ray arcs to the trace formula.
It is possible to derive the diffraction part of the Green's
function directly from the semiclassical approximation of
the Feynman path integral in the neighborhood of a hard
curved wall [9]. We have chosen Keller's approach here,
since it is more suitable for computing- the trace of the
Green's function, without further approximations.

It has been known for quite a long time that the scat-
tering amplitude in the shadowed region behind an ob-
stacle can be well reproduced by allowing diffracted rays
in addition to geometrical ones [8]. The diffracted rays
connecting two points in the configuration space in the

presence of sharp objects can be derived from an exten-
sion of Fermat s variational principle of classical mechan-
ics [8]. The usual Fermat principle states that the classical
trajectories connecting two positions q~ and qp in con-
figuration space are those smooth curves which make the
action stationary. If the configuration space is bounded

by hard walls, a generalized variational principle, intro-
duced by Keller [8], has to be applied. This principle
requires new classes of curves. We have to consider for
each triplet of integers r, s, t ~ 0 the class of curves 23„„
with r smooth arcs on the surface, s points on the edges,
and t points on the vertices of the boundary or the dis-

continuity. The curves of the GTD are those which make
the action stationary within one of the classes 27„,, The
class 27ono corresponds to the usual geometrical orbits. In

this Letter, we concentrate on two-dimensional problems,
where the simplest nontrivial curves are of class 27~OO

and 27ooi [Figs. 1(a) and 1(b), respectively], whereas edge
diffraction 27oio is not possible. Once we know the gen-
eralized ray we can compute semiclassically the Green's
function G(q~, q~, E), tracing the ray along it [8]. In

Fig. 1(a) (27ion) the trajectory —obtained from the gener-
alized variational principle —is tangent to the surface of
the hard wall obstacle at points M' and 'B' The Gre. en's
function G(q~, q~, E) can be computed semiclassically

by the energy domain Van Vleck propagator (for a single
classical trajectory)

G(q, q', E) =
312 Dv (q, q', E)e~

2vrih 312

(1)
where Dv(q, q', E) = (det( t7 S/iJq, Bqj)—)/)q[ (q') is the

Van Vleck determinant and v is the Maslov index (see
Ref. [10] for definitions).

When the geometrical ray hits the surface of the

obstacle, it creates a source for the diffracted (creeping)
wave. The strength of the source is proportional to the
Green's function at the incidence of the ray

Qdi ff DGinci ~ (2)

The diffraction constant D depends on the local geometry
and the nature of the diffraction. It has been determined

in Ref. [8] from the asymptotic semiclassical expansion of
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A' B' A' coefficients along the ray:

a) b)
G(q~, q2i, E) = G(q~, q~, E) QDi~ G, (q~, q2), E)

1=1

&& Di.23G(q3 qadi. E) (6)

Di 21/33 —2/3qre5iss/12(k )t/6/Ail(xi) (3)

Here Ai'(x) is the derivative of the Airy integral Ai(x) =
io dr cos(xr —t3), k = $2mE/8 is the wave number, p is
the radius of the obstacle at the source of the creeping
ray, and x& are the zeros of the Airy integral, which can be
approximated as xi = 6"3[3qr(i —1/4) ]2/3/2 in the semi-
classical limit. The index l ~ 1 refers to the possibility
of initiating creeping rays with different modes, each with
its own profile. In practice only the low modes contribute
to the Green's function. The source then initiates a ray
creeping along the surface. During the creeping of the
ray the amplitude decreases, which can be understood as
a process analogous to the radiation processes of electro-
dynamics. The radiated intensity is proportional to the
intensity of the ray:

d—Ai(s, E) = —2ai(s, E)Ai(s, E),
ds

(4)

FIG. 1. The simplest classes 27,00 (a) and Doo, (b) of curves
in two dimensions. In the window (c): the first four basic
orbits in the fundamental domain of the two-disk system.

the exact solution in some simple geometry [8] (see also
[11]). Its form is

In a general situation, when the ray consists of several
pure geometric and creeping arcs, the Green's function
can also be written as a product of partial Green's
functions and diffraction constants.

To incorporate diffraction effects into the trace formula,
one should compute the trace of the Green's function
derived above. As in th~ case of the Gutzwiller trace
formula —derived from a pure geometrical approximation
of the Green's function —the trace receives the leading
contributions from tubes encircling the closed curves,
which now can have diffractional arcs too. We can handle
separately the pure geometric cycles and the cycles with
at least one diffractional are along one of the obstacles:

Tr G(E) = Tr GG(E) + Tr Go(E),

where Tr GG(E) is the ordinary Gutzwiller trace formula,
while Tr Go(E) is the new trace formula corresponding
to the nontrivial cycles of the GTD. Tr GD, (E) can be
computed by using appropriate Watson [11,13] contour
integrals. For technical details we invite the reader to see
Refs. [14] and [15]. Here we communicate the general
result, and the detailed calculation will be published
elsewhere [16]. If we denote by q;, i = I, . . . , n (with

q„+; —= q;), the points along the closed cycle, where the
ray changes from diffraction to pure geometric evolution
or vice versa [see A. ' and 'B' in Fig. 1(a)], the trace for
cycles with at least one diffractional are can be expressed
as the product

where s is the length measured along the surface and
Ai(s, E) is the complex amplitude of the Green's function
along the surface. The coefficient ai(s, E) depends on
the local curvature of the surface, I/p(s), and it has the
structure ai(s, E) = xie ' /6[k/6p(s) ]' (see Ref. [12]),
where the index l refers again to the different modes of
the creeping wave. The Green's function for the creeping
ray of mode l is then given by

rL

G (, , E) = —f d a, ( 6s) 'ss(q&, qual 6')

where L is the length of the arc of the creeping ray,
and S(q~, q2), E) is the action along it. The creeping
ray at the point S' initiates a pure geometrical ray. The
source of this ray is located in 8', and its strength is
again given by Eqs. (2) and (3) due to the invariance
of the Green's function against the interchange of the
variables q~ and q+. The total Green's function is
then the product of the Green's functions and diffraction

T(E)
Tr Go(E) = g . D(q;)G(q;, q;+it E), (8)

cycles i =1

where T(E) is the time period of the cycle (without
repeats) and D(q;) is the diffraction constant (3) with the
radius of curvature p given locally at the point q;. The
creeping mode index l and the corresponding summations
[see, e.g. , (6)] are suppressed here for keeping the
notation simple. G(q;, q;+itE) is alternately the Van
Vleck propagator, if q; and q;+l are connected by pure
geometric arcs, or is given by (5) in case q; and q;+& are
the boundary points of a creeping arc. Note this formula
applys only for cycles with at least one creeping section.
Such cycles have the special property that their pertinent
energy domain Green's functions are multiplicative [see,
e.g., (6) with the summations over the creeping mode
numbers of course included consistently]. This does not
hold for pure geometrical cycles.
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The eigenenergies can be recovered from the
Gutzwiller —Voros spectral determinant [2] A(E), which
is related to the trace formula as

Tr G(E) = Ink(E).
d

dF.

can be reduced in such a way that the composite cycles
are exactly cancelled in the curvature expansion

(1 —t„l = 1-- gt,

The full semiclassical determinant can be written as
the formal product of two spectral determinants, one
corresponding to pure geometrical and one to new cycles
b, (E) = /& G(E) b, o(E) due to the additivity of the traces.
The product is only formal, since the eigenenergies are
not given by the zeros of Ao(E) or Ao(E) individually,
but have to be calculated from a curvature expansion of
the combined determinant A(E) itself.

The diffraction part of the spectral determinant is

Ao(E) = exp —P — [D(q; )G(q;, q;+&, E)]"
pr=& i & =)

(10)
where the summation goes over closed primitive (nonre-

peating) cycles p and the repetition number r. The product
of Green's functions should be evaluated for q,

" belonging
to the primitive cycle p. After summation over r, the spec-
tral determinant can be written as

Ao(k) = , i&, l.„
(l-~ )/2 ~

' (16)

where k = $2mE/It and 2m = &tt = 1, and leads to the

following predictions for the semiclassical Al resonances

where ti, are basic primitive orbits which cannot he

composed from shorter primitive orbits.
To demonstrate the importance of the diffraction effect»

to the spectra, we have calculated the Al resonances of the

scattering system of two equally sized hard circular disks
with disk separation R = 6a, where a is the radius of one
disk. In this system there is only one geometrical periodic
cycle along the line connecting the centers of the disks.
Its stability AP = 9.8989794 and action 5P = kLP = k4a
yield the geometrical part of the spectral determinant

[15,17]

Ao(E) = (1 —tp) k,",", =
[ ~(2n —1) —i, ' ln A p]/L p (17)

with

fp D(q; )G(q;, q;+&, E), (12)

where q; belongs to the primitive cycle p. As mentioned
before, the mode numbers l of the diffraction constants and

the corresponding summations have been suppressed for
notational simplicity; they can be easily restored as, e.g. „

in the final expression (19).
We can conclude that the diffractional part A&(E) of

the spectral determinant shares some nice features of the

periodic orbit expansion of the dynamical zeta functions

[3], and it can be expanded as

b p(E) —1 —gtp + g tptp
P PP

(13)

The weight (12) has the following property which helps
in radically reducing the number of relevant contributions
in the expansion. If two different cycles p and p' have at
least one common piece in their diffraction arcs, then the
two cycles can be composed to one longer cycle p + p',
and the weight corresponding to this longer cycle is the
product of the weights of the short cycles

tP+P' P tP' (14)

As a consequence, the product of primitive cycles, which
have at least one common piece in their diffraction arcs,
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with n = 1, 2, 3, . . . . Note in the above expressions (1 +
4j)/2 replaces the usual weight (1 + 2j)/2, since the

geometrical orbit in the two-disk problem lies on the

boundary of the fundamental domain [17].
Figure 1(c) shows the first four new basic cycles in the

fundamental domain [17]. We computed the geometrical
data of the first ten orbits and used them to construct the

creeping and geometrical Green's functions. The semi-

classical Green's function in free space is asymptotically
(kR» 1)

Go(q, q', E) = ——
l

e'
4 srkR )

(18)

where R =
~q

—q'~. If the ray connecting q and q' is re-

flected once or more from the curved hard walls before
hitting tangentially one of the surfaces, we can keep track
of the change in the amplitude by the help of the Sinai-
Bunimovich curvatures.

By computing the curvatures ~; right after the reflec-
tions, and knowing the distances I; between the ith and the

(i + 1)th points of refiections, the factor R in the Green's
function (18) has to be changed to the effective radius
R't' = Ro P, , (1 + l; ~;) where Ro is the distance between

q and the first point of reflection along the ray starting from

q, and m is the number of reflections from a disk. The ef-
fective radius Rb', the length of the geometrical are L&, ,
and the length of the diffraction part Lb of the first ten or-

bits with creeping sections are listed in Table I. To each
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mb L /a

5.65685
6.00000
9.83215
9.79795

13.81654
13.81309
17.81499
17.81464
21.81483
21.81479

R;"/a

5.65685
6.00000

58.16784
58.78775

578.14066
579.74342

5729.64981
5732.23550

56728.70010
56732.26871

Lbo/a

3.82126
3.14159
3.47648
3.54430
3.50740
3.51425
3.51048
3.51118
3.51079
3.51086

TABLE I. Table of the first ten basic cycles tb which include
creeping sections in the fundamental region of two-disk
problem (with disk separation R = 6a). The cycles are labelled

by their number mb of geometrical reflections from one of the
disks. The length of the geometrica Lrc Lb, the effective radius

Rb, and the length of the diffraction section Lb are listed in
units of the disk radius a.

AG(k) Ao(k) at maximal cycle length 5 and using only
the I = 1 term in the now restored summation over the

creeping mode number. The exact quantum mechanical
resonances were computed following Ref. [14].

The leading semiclassical resonances are given equally
well with and without creeping modifications. In Fig. 2
we can see that the new formula describes the resonances
of the two-disk system with a few-percent error, while
the computation based on the geometrical cycle alone,
Eq. (16), gives completely false results for the next-to-
leading resonances [see Eq. (17)].
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cycle in the list, there is a whole sequence of cycles which
wind around the disk m times. For these orbits one has to
add 2n. am to the diffraction length Lb The di.ffraction
part of the spectral determinant is finally given by

1/3

i'll/12

ik(Lb +Lb )—uILb

~o(k) = 1 — (—1) '«
1

X
1 e27T(ik —ai)a '
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FIG. 2. Resonances for the A1 subspace of the two-disk
system (with disk separation R = 6a) in the complex k plane
in units of the disk radius a. The diamonds label the
exact quantum mechanical resonances, which are the poles
of the scattering matrix. The crosses are their semiclassical
approximations, including the diffraction terms derived in this
paper. The boxes refer to the ordinary Gutzwiller semiclassical
approximation [Eq. (17),j = 0, 1], where the diffraction effects
are not included.

where Ct = m. /23 / 2 / /Ai'(xt), and the summation
for the windings m gives the factor 1/(1 —e2 ('" '1').
We computed the spectra by truncating the product
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