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Nonlocality of a Single Photon Revisited
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A proposal to demonstrate the nonlocality of a single photon is described. This is accomplished
without using inequalities, and in a way that brings out a very curious feature of quantum mechanics.
Unlike the first proposal to investigate the nonlocality of a single photon due to Tan, Walls, and Collett,
this proposal does not require supplementary assumptions, and therefore rules out the whole class of
local hidden variable interpretations.

PACS numbers: 03.65.Bz

A few years ago, Tan, Walls, and Collett (TWC) [1]
proposed a scheme to demonstrate the nonlocality of a sin-

gle photon (see also Oliver and Stroud [2]). The idea was
that measurements made on the two output channels from
a source could violate locality even when only one pho-
ton is emitted from the source at a time. The importance
of this idea is emphasized by the fact that, as early as
1927 (at the Fifth Solvay Conference), Einstein [3] pre-
sented the collapse of a single particle wave packet to a
near position eigenstate as a paradigm for nonlocality in
quantum mechanics (indeed, one might even say that he
anticipated the Einstein-Podolsky-Rosen argument in the
context of this example [4]). This was, of course, long
before Bell's careful analysis [5] of a two particle sys-
tem showing that nonlocality is an irremovable feature of
quantum mechanics rather than just being a problem with
the formalism. Until the work of TWC, it had been im-
plicitly assumed that to get a violation of Bell inequalities
one required a two (or more) particle state, and for this
reason their idea surprised many people. Unfortunately,
the proposal of TWC requires certain supplementary as-
sumptions which quite severely restrict the class of local
models it rules out [6,7]. However, that a single photon.
might exhibit nonlocality is such an exciting idea that it
seems worthwhile to look for a demonstration which does
not require supplementary assumptions. Here we will con-
sider a source which never emits more than one photon at a
time and, on average, emits less than one photon. We will
find measurements that allo~ a demonstration of nonlocal-
ity without using inequalities (by analog with the proof in
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FIG. l. Apparatus used to prepare the state e(0) + f ( I).

[8]). The experimental configuration we will consider is
quite similar to that of TWC, but the analysis is completely
different.

First we will see how to prepare states like e~0) + f~1).
Figure 1 shows a nonlinear crystal being pumped by a
strong laser. A signal and idler mode are picked out
(for example, by means of diaphrams) and a low intensity
laser beam with the same frequency as the idler photons
is aligned with the idler mode from behind the crystal.
The detector placed in the idler path is assumed to be
able to measure photon number so that it can distinguish
one photon from two photons, etc. Ou et al. [9] have
also considered the arrangement in Fig. 1 (although they
were interested in the case where the intensity of the
laser behind the idler mode is high), and some of the
treatment below is taken from their work. The interaction
Hamiltonian for the parametric down-conversion process
in the crystal is

HI = ihgata; V + H.c. ,
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lo&a lo&b —lo&c 1o4, (sa)

1o&.11&b — (lo&c I 1 &d + ~ I I &c lo&d) (5b)
1

2

Il&.lo&„— (ilo&, II&d + ll&, lo&d).
1

2
For the sake of clarity, we will take it that the a mode is
transmitted into the c mode. Then, the i factors in these
transformations are picked up on reAection.

Now we come to the demonstration of nonlocality.
The apparatus to be used is shown in Fig. 2. The state

qlo), + r I 1), is prepared by the method described above
and impinges onto one input (s) of a beam splitter. The
other input (t) into this beam splitter is just the vacuum.
The two outputs, u~ and u2, from this beam splitter
each impinge onto a further beam splitter where they are
each mixed with the coherent states la&)„and la2)„,
respectively. In the outputs from these beam splitters (c~
and d~ at end 1 and c2 and d2 at end 2) detectors are
placed that can measure photon number. In addition, there
are detectors that can be placed into paths u] and u2. Let
C~ denote the detector in path c~ and also let it denote the
number of photons detected at that detector, such that if
n photons are detected at detector C~ then we will write

C] = n. Similar notation is used for the other detectors.
The state impinging on the first beam splitter is

(qlo), + rll), )IO), . Evolving through the beam splitter it

(Sc)

where g is a coupling constant, V is the complex
amplitude of the pump (which we will treat classically),
and a, and a; are the annihilation operators for the signal
and idler modes, respectively. The initial state is IP&;lo)„
where IP) is a coherent state with amplitude P. After
some short interaction time t, the state becomes

lp& = exp( —iH, rlr) Ip&, lo&, ,

which can be expanded as

ly& = Ip&;lo&, + grva, 'Ip&;II&, + " .

The coherent state IP) can be written as

IP&=e 1 g In&. (3)
n!

Substituting this into Eq. (2) and collecting terms, we
obtain

lp& = e 2P [lo&;lo), + ll);(plo), + grvll&, ) + lq&],

(4)
where the state lq) contains only terms that have more
than one photon in the idler mode. If we consider those
times when only one photon is detected in the idler mode
then we see from Eq. (4) that the state in the signal mode
becomes plo), + gtvl1), which is in the required form.

The setup we will consider involves three 50:50 beam
splitters. Consider a beam splitter with input modes a and
b and output modes c and d. For such a beam splitter we
can use the following transformations (see, for example,
[lol),

There are two possible choices of measurement at each
end: either with detector Uk in path uk or with it removed.
This makes a total of four possible experiments. We will
now consider each of these experiments.

Experiment 1: Detectors U~ and U2 are put in paths u~

and u2, respectively. Since no more than one photon is
emitted from the source at a time, it is clear that

U~ = 1 and U2 = 1 never happens. (7)
This is also clear from Eq. (6) since there is no Il)„,Il)„,
term.

Experiment 2: Detector U~ is removed from path u~ and
detector U2 remains in path u2. Thus, path u~ is allowed
to impinge on one input of the beam splitter at end 1 with
the coherent state la~) incident on the other input. The
state of the system after the first beam splitter, given in

Eq. (6), can be written

Iq') = qlo). ,
+ Il&., Io)., + Io&., Il&., (8)

Now, consider the case in which no photons are detected
at detector U2 (so that U2 = 0). When this happens, the
state is projected onto the first term in Eq. (8) such that the
state in mode u& becomes N[qlo&„, + P Il)„,], where N is
a normalization constant. Including the coherent state, the
state entering the beam splitter at end 1 is

( ir
In)&. , wl qlo&„, + ll)

2 ')
Expanding out the coherent state [using Eq. (3)] and
collecting terms, we obtain

we !"!qlo). , lo)„, + lo). , ll)„,
2

+ ~iqll&. , lo). ,
+ Iq'),

2

U2

2

)
1

FIG. 2. Experimental setup used to demonstrate the nonlocal-
ity of a single photon. The state ql0) + rl1) is incident on the
s mode, the vacuum is incident on the t mode, and the coherent
states I ark) are incident on the a„modes (k = 1,2).

becomes [using the transformations given in Eq. (5)]

le& = qlo&„, lo&„, + '"
ll&„, lo&„, + "

lo&„, ll)„, . (6)
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where l q&') contains only terms with a total of two or more

photons (as we shall only be interested in those cases
in which a total of one photon is detected, we need not

pay any special attention to the evolution of these terms).
Evolving through the beam splitter this state becomes,
using the transformations in (5),

qlo&. , lo&d, +
I
~|q--'i~, p

E. 2j
( r )+ il ~iq + llo)„ll&d, + Iq"), (9)2j

where the state lp') has evolved to ly"). We now take
u to be set such that niq +

&z
= 0. This means that

the two possibilities contributing to the lo)„ll)d, term
will interfere destructively as can be seen from (9).
Not forgetting that we are considering the case where

U2 = 0, we have the result that if U2 = 0, then it never
happens that Ci = 0 and D] = 1. Thus, if we do find

that Ci = 0 and Di = 1, then we cannot have U2 = 0 and
so must have U2 = 1 (since U2 can only take values 0
and 1). If Ci = 0 and Di = 1, then we will write Fi = 1

for shorthand. Thus we have the relevant prediction of
quantum theory for the second experiment:

ifFi =1then U2 =1. (10)

where F2 = 1 is shorthand for C2 = 0 and Di = 1.
Experiment 4: Detectors U| and U2 are removed from

paths u& and u2, respectively. Thus, both paths impinge
onto one input of a beam splitter with a coherent state
incident on the other input in each. The prediction of
quantum theory that is of interest in this experiment is

Fi = 1 and F2 = 1 happens sometimes. (12)

To see that this is true, consider the evolution of the
system. The state after the first beam splitter, including
the coherent states, is l+&la&)lu2) where lW) is given in

Eq. (6). This can be expanded out using Eq. (3) to give

Experiment 3: This experiment is the same as the

previous experiment, but with 1 and 2 interchanged. n2
is set such that if Ui = 0, then there will be destructive
interference of the two possibilities contributing to the

lo)„l 1)d, term. It is readily shown that the condition for
this is iu2q + ~z

= 0. This implies (by analogy with

experiment 3) that

if F2 = 1 then U~ = 1,

u, u, qll&. , lo&„,11)., lo&„, + '"11).
, lo)„,lo)., ll)„, + ' '"

lo). , ll&„, ll&., lo)„, + lq'"&, (13)

where lp'") contains all those terms that do not have a total of one photon at each end [and hence cannot have any
relevance to the prediction (12)]. Upon evolving through the beam splitters at ends 1 and 2, the state becomes, using

(5),

2

2j 2 2 2 2 2 2
(14)

where all the terms not relevant to prediction (12) are
contained in the state l8). Using the settings of ai and u2
from experiments 3 and 4, we find that the square modulus
of the coefficient in front of the lo)„ll)d, lo)„ll)d, term

lrl'
is equal to,~i, e (i 'i +i 'i ). This is nonzero provided
that q and r are nonzero, and hence prediction (12)
follows.

To see how curious these predictions are consider the
following scenario. Two observers, Alice at end 1 and
Bob at end 2, each choose randomly whether to place
their Uz detector in path uz (in which case we will say
that they are measuring Uq) or to remove it (in which case
we will say that they are measuring Fk). Consider a run
of the experiment in which Alice chooses to measure Fi
and Bob chooses to measure F2, and the results Fi = 1

and F2 = 1 are obtained [this result sometimes follows
from (12)]. From her result FI ——1 and the prediction
(10), Alice can deduce that if there is a detector placed in
the u2 path at the other side then a photon will be detected
there, and from this she may deduce that the photon from
the source actually went towards Bob (at least in the sense

that if a detector had been placed in path u2 it would have
fired). On the other hand, from his result F2 = 1 and
prediction (11),Bob can deduce that if there is a detector
placed in path ui then a photon will be detected there,
and from this he may deduce that the photon from the
source actually went towards Alice (at least in the sense
that if a detector had been placed in path ui it would
have fired). However, there is, at most, only one photon
emitted from the source, so they cannot both be right.
That is to say, if detectors had been placed in paths u&

and u2 then, for this particular run of the experiment, both
detectors would have fired —but this violates prediction
(7). Thus we have a contradiction. This argument is
so persuasive that one might be tempted to think that
quantum mechanics must be wrong. However, we will
now see that there is an implicit assumption of locality in
this reasoning, and that without this assumption there is
no contradiction. Alice obtains Fj = 1. Bob is actually
measuring F2. Alice might deduce from her result and
the prediction (10) that had Bob measured U2 instead he
would have gotten U2 = 1. However, without assuming
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locality, this deduction is wrong, because if Bob had
decided to measure U2 instead, there might then have
been a nonlocal influence from Bob's end to Alice's end,
and Alice might not then have obtained the result F] = 1

[so then she could not use the result (10) to deduce that

U2 = 1]. Of course, similar remarks apply to Bob. (See
[8,11] for more rigorous discussion on how predictions of
this form violate locality. )

Some further remarks relating to the above calculations
are necessary. If the idler detector clicks at time t,
we require that the given state has been emitted within
some time interval t —r/2 to t + r/2 where cr is small
compared with the dimension of the experiment (the idler
detector clicking acts as a trigger for the other detectors).
It follows from the energy-time uncertainty inequality
that there must be a certain spread of frequency in the
photons emitted from the source. Consequently, a full
treatment requires a multimode calculation. Thus, rather
than q~0) + r ~1), the state incident on the s input is

q~0), + gr;(1), ,

where i labels different frequencies (as usual, the sum
over frequencies turns into a integral as the mode spacing
tends to zero). The source photons must be indistinguish-
able from the photons emitted from the local oscillators
used to make the measurements at ends 1 and 2, and
therefore the latter must also have the same spread of
frequency. Thus, let these local oscillators be described
by multimode coherent states ~(ak]) = [j, ~a„'). Expand-
ing out the fist few terms in this product [using a similar
equation to (3)] we get

[12] can be put into the form

—
1 ~ Prob(F~ = 1&F. = 1) —Prob(F~ = 1&.U. =- 0)

—Prob(U, = 0&F, = 1)

—Prob(U) ——1&.U. =- 1) ~ 0

(where here Fk and Ul, can refer to any measurements
that might be performed at end k of an apparatus).
With the predictions (7), (10), (11), and (12) the first
probability in (18) is equal to e~ ez~ p, v~4Ai2 and the other
probabilities are all equal to zero, and so the upper limit
inequality is violated. If we deviate slightly from these
predictions, then as long as the deviation is not too great,
this inequality will still be violated, and so we still have
nonlocality.

In conclusion, we see that the original worries about
nonlocality of a single particle expressed by Einstein at
the 1927 Solvay Conference have some solid basis in
fact. One natural question that arises is whether this
nonlocality is only restricted to photons. The answer
would seem to be that an analogous proof to the above
could be constructed for any type of particle for which it
is possible to prepare a direct superposition of that particle
with the vacuum. However, for a vast range of types of
particles there are superselection rules that prohibit just
exactly this, and nonlocality with single particles of this

type could not be observed.
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&2q
' (17)

In practice this would be very difficult to achieve.
However, in principle, it could be done by taking a very
large number of single mode lasers and combining them
at a multiport beam splitter in such a way as to produce
the required multimode coherent state.

Given the difficulties in realizing such an experiment, it
is interesting to look at the case where we deviate slightly
from the inequality-free proof of nonlocality. It can be
readily verified that the Clauser-Horne-Bell inequalities

The previous calculations can be easily repeated with
the multimode states Eqs. (15) and (16). Thus, r~l),
is replaced with g; r, ~l), and uq~1), „ is replaced with

g, u„'~1);,„and so on through the calculation. The
predictions (7), (10), (11), and (12) that were used to
run the argument against nonlocality are recovered if we
set the complex amplitude of each frequency mode in the
multimode coherent states according to
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