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Critical Behavior of the Randomly Spin Diluted 2D Ising Model: A Grand Ensemble Approach
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The critical behavior of the 2D spin diluted Ising model is investigated by a new method that
combines a grand ensemble approach to disordered systems with phenomenological renormalization.
We observe a continuous variation of critical exponents with the density p of magnetic impurities,
respecting, however, weak universality in the sense that tt and y/v do not depend on p while y and v

separately do. Our results are in complete agreement with a recent Monte Carlo study.

PACS numbers: 75.40.Mg, 75.10.Hk

The present contribution is concerned with the critical
behavior of the 2D spin diluted (SD) Ising model.
For this model, the Harris criterion [1], according to
which small amounts of disorder do (not) change the

nature of the phase transition, if the corresponding pure
system's specific heat exponent is positive (negative), is
inconclusive, since up„„= 0. The critical behavior of the
disordered system has been a subject of debate for many
years; see [2] and references therein, and [3—10].

Currently, there appears to be widespread consensus
that critical exponents of bond disordered (BD) systems in

the ~eak disorder limit are the same as those of the pure
system, albeit modified by logarithmic corrections [3—
6]. Monte Carlo (MC) simulations of BD systems [6,7]
indicated that such modifications through logarithmic
corrections would persist even in the strongly disordered
regime. In [9], on the other hand, a more complicated
phase transition and a nondivergent specific heat are
predicted. Lastly, a recent MC study of the SD system
[10] produces results at variance with the findings of [3—
9], in that it gives critical exponents which clearly vary
with the density p of occupied sites.

It is this investigation, in particular, which finally
convinced us to put our own transfer-matrix analysis of
the SD system —both the method and its results —to
public discussion, even though, or rather because we are
aware that a deeper understanding of our approach [11]
would still be welcome. In essence, we find that there
is full qualitative and quantitative agreement between the
MC results of Kim and Patrascioiu [10] and ours.

We study the SD system by a new method [11]
which combines Morita's grand ensemble approach
to disordered systems [12] with phenomenological
renormalization [13]. We begin by briefiy describing
Morita's method of configuration averaging in systems
with quenched randomness. We then state our main

results, relegating details of our investigation to a separate
publication [14].

Consider a system described by the Hamiltonian

H(o ~~), where tt denotes the quenched disorder con-
figuration, and o- the set of dynamic variables. Morita
avoids configuration averaging of the free energy by

working in an enlarged phase space in which ~, too,
is a dynamic variable, and by introducing a potential

P(~) chosen such that the new system with Hamiltonian
H~(o, «) = H(tTIItt) + P(tt) exhibits thermodynamic
equilibrium properties identical to the nonequilibrium
properties of the quenched system. To achieve this, the
distribution p&(a, ~) generated by H&(cr, t~) must be
constructed such that it satisfies

exp[ —PH~(a, u)]p~(a-, ~) = q(~)
Z(tt)

exp[ —
P H(a.

~ tt)]

+Apg k, +.
P i&P

where the occupation numbers k; are 1 or 0, if in ~ the

site i is occupied or empty [19]. The first sum in (3)
is over all lattice sites, the second over nearest neighbor

pairs, and the third over all elementary plaquettes of the

system. Each term serves to control one moment of
p (tt) = g p~(a. , a), i.e., an expectation under p& of
some product of the k;. The couplings Al, A2, . . . have to
be determined as functions of temperature and field such

(i)
for all (a., ~). Here Z~ and Z(t~) are partition functions of
the grand ensemble and the quenched system at fixed ~,
respectively; q(tt) is the probability distribution describing
the quenched disorder. If @ is normalized such that

(@(~))~ = 0 [14],Eq. (1) implies

ln Z~ = (ln Z(K))~ —(ln q(tt))q, (2)

where ( )~ denotes an average over the quenched disor-
der. That is, ln Z@ gives the Brout free energy plus an

irrelevant contribution of an entropy of mixing. Equa-
tion (2) shows that an equivalent equilibrium system
exists.

In order to utilize Morita s ideas in practice, one has
to find a representation for P(tt) which is adapted to the

problem at hand, and one will usually have to resort to
approximations [11,14—18]. For the spin diluted Ising
model, one may expand @(tt) according to

p@(t~) = Ao + At gk; + Ap g k;k +
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that the moments of p4'(~) coincide with those of q(~),
while Aa is required to achieve &P(~))~ = 0.

For an SD system with spin density p, one would have
to determine the couplings of P so that [11,17]

&k)q = p, &«k&)y = p''"

g, . = plpl (4)

Here ( .)~ denotes an average with respect to p&(a) and

~P( the size of the elementary plaquette, which for the
square lattice is 4. Equations (4) constitute an infinite set
of equations for the couplings A~, A2, . . . of the exact po-
tential P. To obtain a full solution is, in general, impos-
sible. Interpreting (4) as a set of constraints imposed on
the thermal motion of the magnetic impurities, one may,
however, set up a systematic scheme of approximations

by letting only finite subsets of this set of constraints be-
come operative [11,17]. Implementing only &k;)~ = p,
one would describe an annealed system, which would pro-
vide a rather poor description of quenched disorder. If, in
addition, one fixes nearest neighbor correlations &k;k;)~ at
their quenched value p, the system already exhibits a per-
colation transition, and is therefore the first serious candi-
date for the description of fully frozen-in disorder. In this
manner, one arrives at increasingly accurate descriptions
of quenched disorder as more and more constraints are
taken into account, until eventually one obtains an exact
description of the original disordered system. The hope,
of course, is that already rather simple approximations in
this hierarchy might belong to the "universality class" of
the quenched system.

The method was tested on the 1D system, with the
following results [11,14]. In zero field, H = 0, the
first nontrivial approximation involving only A& and A2

already provides the exact solution. If 0 4 0, no finite
approximation is exact. Nevertheless, the first nontrivial
approximation gives thermodynamic functions usually to
within 1% or less of exact results.

At all levels of approximation, one is dealing with
translationally invariant equilibrium systems. Their criti-
cal behavior in d ~ 2 could be obtained by standard
renormalization group (RG) methods, were it not for the
fact that the couplings of P are determined only through
a set of constraints. Since it is far from obvious how
these constraints should be transformed under rescaling
(see, however, [17]), we decided to use phenomenologi-
cal renormalization [13], which avoids this problem al-
together. No explicit RG transformation in the space of
couplings need be constructed. Given p, one just solves
the system in strip geometries —with the appropriate set
of constraints (4) imposed [11]. Critical temperatures T,
and the thermal correlation length exponent v, are deter-
mined from standard phenomenological RG relations [13]
for the correlation lengths $M(p, T) of (M X oo) systems
at density p, temperature T, and field 0 = 0. By varying
p, we obtain the phase boundary T,(p), and the thermal

TABLE I. Extrapolated critical parameters for percolation,
and the thermal phase transition at p = 0.7 and 0.9. Numbers
in brackets give the estimated error of the last displayed digit
of the preceding quantity.

Percolation p =0.7
pc Pp ~C &r

(a) 0.609(l) 1.33(2) 1.051(1) 1.31(2)
(b) 0.609(1) 1.33(2) 1.050(1) 1.30(2)
(c) 0.587(1) 1.34(2) 1.081(1) 1.29(2)
(d) 0.587(1) 1.33(2) 1.080(1) 1.30(2)

p =0.9
~C &r

1.902(1) 1.13(1)
1.901(1) 1.13(1)
1.901(1) 1.12(1)
1.901(1) 1.13(1)
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correlation length exponent v, along the critical line. The
method can also be used to study the percolation transi-

tion at T = 0, p = p, .
We studied four approximations, named (a)—(d). In

system (a), only the first and second constraints displayed
in (4) are imposed. Due to the anisotropy of the strip ge-
ometry, correlations parallel and perpendicular to the strip
turn out to be different. We thus introduced system (b)
where correlations parallel and perpendicular to the strip
are treated as separate constraints. Systems (c) and (d)
are obtained from (a) and (b) by fixing, in addition, cor-
relations around each elementary plaquette at p4. Note
that results for systems (a) and (b) or (c) and (d) should

approach each other as the strip width M goes to infin-

ity. This can serve as a valuable consistency check for
extrapolations of critical parameters to the infinite system
values.

We now turn to the results. We computed T,(p)
for various p ( 1. Values obtained for systems (a)—(d)
agree very well down to p = 0.75. Below p = 0.75,
the T, (p) of systems (c) and (d) with the plaquette
constraint turn out to be slightly larger than those of
systems (a) and (b) without this constraint. As p 1,
we obtain T,(p) ~ 2.2674, which is off the mark by
less than 0.1%, and T,(p) 'd—T,(p)/dp ~ 1.579, which
differs from the exact result 1.565 [20] by less than 1%.
We have also checked the scaling form of the transition
line near p„exp[—2J/keT, (p)] —(p —p, )", with p =
v, (p, )/t ~, and we find p = 1 to within less than 2% for
all four approximating systems [11]. Here t ~ denotes the
connectivity length exponent of the percolation transition.
The percolation threshold p, itself (p, = 0.593 [21]) is
correctly reproduced to within 3% and 1% by systems (a)
and (b) and (c) and (d), respectively; see Table I.

Figure 1 shows the correlation length exponent v of
system (a), based on extrapolations from strip widths up to
M = 8 and 10 for the thermal and the percolation transi-

tions, respectively. They clearly show a variation with the
spin density p. For p = 0.7 and 0.9, Table I shows that
this variation persists, as we impose further constraints
in systems (b)—(d). Note that the exponents v are al-

ways mutually consistent for these four approximating
systems. For the percolation transition, they agree well
with the exact result v„= 4/3 [22]. Also, the isotropic
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FIG. 1. Correlation length exponent v of system (a) for
various densities p (open squares). The leftmost open square
was determined as a connectivity length exponent v„. The
exact result v„= 4/3 is displayed as a diamond at p, = 0.593.
Results from a RSRG calculation, using the b = 2 and b = 3
decimation transformations of Yeomans and Stinchcombe, are
given as full curves. Full circles show the Monte Carlo data
of [10]; except near p„where a precise location of the phase
boundary is difficult, the agreement with our model (a) results
is excellent.

the Fisher relation y/v = 2 —ri. We find this relation
satisfied in systems (a)—(d) at all densities, usually to
within 1% or better. The same kind of weak universality

[26] is also observed in [10];it is of the same type as that
encountered in the eight-vertex model [27].

Some time ago, Derrida et al. [28] found analogous
nonuniversal behavior of Binder's cumulant ratio in a
family of self-dual bond disordered Ising models, which

they ascribed to logarithmic corrections to scaling. How-
ever, as pointed out by Cardy [29], in order to disentangle
logarithmic from power-law corrections to finite-size scal-
ing, one might have to go to rather large strip widths, and

our data, as yet, do not support the conclusion that the ob-
served nonuniversality is only apparent and caused by log-
arithmic corrections; see Fig. 2 which shows the variation
of the phenomenological critical exponent v~ ~ 1 of sys-
tem (a) with system size M, and the inset which addresses
this particular point. A recent MC study of the BD system
[29] also yields exponents different from those of the pure
system, which these authors interpret as being nonasymp-
totic, because they would violate the Rushbrooke relation,
if one assumes n = 0 according to [3—6]. However, it

turns out that the specific heat data of [30] can equally
well be fitted with a negative u [31] consistent with the
Rushbrooke relation, so that these exponents may equally
well be regarded as asymptotic.

and anisotropic variants in the two groups of systems,

(a),(b) and (c),(d), always give consistent results (as they
should). While all four systems agree in "universal" char-
acteristics of the phase transition, v~ or v„ the first group
can differ from the second as far as the nonuniversal pa-
rameters, p, or T,(p), are concerned.

The variation of v, with p goes against standard
universality considerations, and one might well argue it

to be an artifact of our simple approximations so we
tried to obtain independent evidence. Turning to real-

space renormalization group (RSRG) calculations [2],
we noted that they, too, are able to produce similar
results. The full curves in Fig. 1 are obtained from RSRG
decimation transformations a la [23],parametrized by the

spin density p in a manner proposed in [24]. While such

an approach may still seem ad hoc, we find that, last but
not least, recent large scale MC simulations of the SD
system [10] also give a nonuniversal v, (p) in quantitative
accord with our results, as can be seen in Fig. 1.

The agreement between the results of [10] and ours

goes, in fact, much deeper. We computed susceptibilities
and used the finite-size scaling relation ~~(T,) —M~~'

to determine y jv. We find y jv = 1.75 as in the pure
system, independently of p, which implies that y itself
is again nonuniversal. The amplitude Ao of the critical
finite-size correlation length, $M(T, ) = AoM, is related to
the critical exponent g according to Ao = I/7r g [25]. We
used this relation to determine q, and we find g = 0.25
I'ndependently of p for the thermal transition, which is
of course consistent with the p independence of y/v via
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FIG. 2. Variation of the phenomenological critical exponent
vMM &

with strip width M, for system (a); open squares:
percolation; diamonds: p = 0.7; full squares: p = 0.9; open
circles: pure system. The inset checks for the possibility of
logarithmic corrections to the pure systems critical behavior.
The quantity I/b, ~ = [v~M ~(p) —vM ~ &(I)] ' is plotted vs

1n(M). For p = 0.9, 1/b, ~ is not monotonically increasing
with M and levels off for large M, which is evidence against
logarithmic corrections. For p = 0.7 the data themselves are
not as conclusive as for p = 0.9. However, 1/b~ appears to
increase slower than linearly with 1n(M) and there is a trend for
the curve to level off.
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The complete set of constraints (4) imposes the con-
dition (P;~„k;)~ = p~ ~ for all subsets cu of the lat-

tice, implying that the correlation length describing the
k; correlations vanishes. Our simple approximations only
fix some of these correlations. Others can, of course,
be computed and are found to vary only slightly with
temperature and field. We have checked that the corre-
sponding correlation length remains small (at most a few
lattice spacings) so that our systems may be regarded as
"nearly" quenched. Moreover, it can be shown [11,14]
that for H = 0 an infinite set of couplings of the exact
potential P vanishes, and is thus correctly taken into ac-
count already at the level of systems (a)—(d). [It implies,
for instance, that in zero field system (a) already provides
an exact description of the ID quenched system. ]

In summary, we have studied the critical behavior of
the SD Ising model by a new method which combines
a grand ensemble approach to disordered systems with
phenomenological renormalization. The grand ensemble
approach allows one to formulate a systematic scheme
of approximations, which was successfully tested against
exact results in 1D and (concerning exactly known prop-
erties of the phase diagram and of the percolation tran-
sition) also in 2D. Our main and surprising result in 2D
is a continuous variation of critical exponents with the
spin density p in a manner that respects weak universal-
ity. Our results are in complete qualitative and quanti-
tative accord with those of a recent Monte Carlo study
[10]. Hence, the observed variation of critical exponents
is most likely not an artifact of our grand ensemble de-
scription of quenched disorder. Note that in the limit of
weak disorder, p 1, our results would not necessarily
contradict those of [3—6].

We are currently using our method to study correlated
disorder and the wetting transition in the presence of
surface disorder, which has recently been a subject of
some controversy in the literature.
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