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Exact Scaling of Spin-Wave Correlations in the 2D XY Ferromagnet with Dipolar Forces
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Long-range spin-wave correlation functions in the ordered phase of a 2D XY ferromagnet with 2D
dipolar forces are governed by the 2D smectic A Hamiltonian and possess exact scaling. The latter
confirms from a different perspective the exact results obtained recently for the 2D smectic A. Exact
scaling holds in the ordered phase of the 2D XY ferromagnet with 3D dipolar forces, with the dimension
of the spatial anisotropy being 5, = —, and the anomalous dimension of spin being q~ = -„.
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The nonlinear smectic A Hamiltonian introduced in

[1] to deal with the elastic theory of "1D" solids was
applied later to a range of physical problems (see, e.g. ,

references in [2]). This Hamiltonian is invariant under
scale transformations [1] and, thus, it governs the critical
fluctuations of the acoustic mode over the entire phase
of existence of 1D solids. On the other hand, a single
ferromagnetic phase transition point is described by the
Ginzburg-Landau Hamiltonian [3]. In this Letter the
smectic A Hamiltonian is cast in a special form which is
shown to govern the long-range spin-wave fluctuations of
a ferromagnet over the entire ordered phase if the dipolar
forces are present along with the exchange interaction.

The spontaneous breaking of continuous symmetry in

a classical ferromagnet involves the creation of mass-
less Goldstone modes (spin waves) in the ordered phase.
Having in most cases a simple q -like dispersion, the
Goldstone modes obey the Ornstein-Zernike power-law
correlation function with the universal scaling dimension
b, = (d —2)/2 [3]. Short range exch-ange interaction be-
tween spins transforms into a current-current interaction
between Goldstone modes (see, e.g. , [4(b)]). The latter is
irrelevant and does not affect A. In this way an ordered
phase can be described by the Gaussian fixed point of
the Goldstone mode Hamiltonian, upon going to infinitely
large scales. This fixed point is associated with the low-
temperature phase. On the other hand, in the special case
of the 2D Heisenberg magnet [4], the Goldstone modes are
asymptotically free at short distances, but at long distances
their interaction is relevant. In this case the flow of the
interaction is governed by the non-Gaussian fixed point.
The interaction becomes infinitely strong at some charac-
teristic scale, beyond which the original global symmetry
is restored and the "Goldstone" modes acquire a mass [5].
There is no symmetry breaking in this case.

In this Letter I show that if the long-range force
is introduced ab initio then these two complementary
pictures can be combined in the sense that the symmetry
broken phase is described by a non-Gaussian fixed point
of the Goldstone mode Hamiltonian with a relevant
interaction due to the long-range force. Specifically, spin

waves of two models —the 2D XY ferromagnet with 2D
dipolar forces (2D dipolar model) and with 3D dipolar
forces (3D dipolar model) —are shown to be governed by
the 2D smectic A-like critical Hamiltonians.

The choice of the second model is motivated by recent
progress in studying epitaxially grown films where dipolar
force can overcome in-plane anisotropies [6] and from
the discovery of the spectacular stripe domain structure
induced by dipolar force [7]. The 2D XF ferromagnet is
an example of a single noninteracting Goldstone mode
with algebraic order. In this model the dipolar force
is essential in establishing the long-range order [8] and,
thus, one can expect it to be relevant. The 3D dipolar
force has a nonrenormalizable form [9], which allows
for exact scaling. The two-point spin-wave correlation
function G(x) turns out to be spatially anisotropic, with

the special direction of the average magnetization being
Sz = 0 Sy = 1 The following asymptotics are suggested
to hold exactly G(x) —

~y~
2t when y && x, and G(x)—

~x~
't when x && y [x = (x, y)].

The first model involves renormalizable 2D dipolar
forces, and it is interesting because its Hamiltonian bears a
one-to-one relationship to the 2D smectic A Hamiltonian,
which is cast in a special form. Recently, Golubovic
and %ang succeeded in mapping the 2D smectic A onto
the 2D stochastic nonlinear Kardar-Parisi-Zhang (KPZ)
equation [2]. Thus, the 2D dipolar model is also related
to the KPZ equation [10]. The anisotropic two-point spin-
wave correlation function found in this Letter for the 2D
dipolar model, G(x) —(y[

' when y » x and G(x)—
~x~

2t' when x && y, is exactly the same as that found
for the KPZ equation [10]. It is remarkable that three

seemingly different physical problems have a common
background.

First, we relate the 2D smectic A to the 2D dipolar
model. One can view the smectic ground state as periodic
in one direction, chosen to be x, structure consisting of
stripes uniform in the perpendicular y direction. Being
effectively a 1D solid the smectic is described by one
scalar field u;(y), which represents a displacement of
i 's stripe in the x direction. %'e choose the only
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atomic length of this crystal, the smectic period (distance
between two adjacent stripes) to be the unit length
a = 1. On scales larger than a one can enumerate the
stripes by coordinate x. Thus, the position of the x
stripe is described by the phase 8(x) = x + u(x). The
smectic long-range Hamiltonian consists of bending and
compression terms:

~2g2+ ~ g2

where p, is the bending constant and K is the compression
constant [11]. The second term in (1) accounts for local
fluctuations of the smectic period and, upon substitution

a„e = 8„„+a„u, contains two relevant cubic and four-
leg vertices [1].

The spin representation of (1) is established by intro-
ducing a two-component spin field S„=8„8. The redun-
dant degree of freedom can be eliminated by the constraint

e„„B„S,= 0. The smectic ground state corresponds to
the uniform ferromagnetic order S„(x) = 1, S~(x) = 0.
Using B„S„=8„8 we rewrite the 2D smectic A Hamil-
tonian (1) as

d x By + Byp

2

+ i@8,p + ikcu BYp ~,2 ) (3)

+ipse „8 S„),jLLV jul V ) 7 (2)

where the "Lagrangian" field p(x) imposes the constraint.
The Hamiltonian (2) possesses two important symme-

tries: (i) it is invariant under simultaneous SO(2) rotations
in spin and coordinate spaces S„' = R„„S„,x„' = R„„x„
where R„„is a matrix from the D = 2 representation of
SO(2); (ii) it is invariant under simultaneous complex con-
jugation and field inverse p' = —p transformations. The
first symmetry refiects the rotational isotropy of smectic A.

To find the long-range limit of Hamiltonian (2), we
decompose the spin field into massive longitudinal and
massless transverse modes S„=(1 + BS)n~. Here n„=
(cosP, sing) is the local normal vector to the smectic
stripes. The fluctuations of this direction are known to
be small (P « 1) [1]. Thus, after integration by parts
of the third term in (2), we can expand it in powers of

The field BS is also small. After neglecting it in
the first term and writing the second term as K(BS)2/2.
we integrate it out. In the anisotropic smectic A [1]
there are further simplifications: B„P « BY@ and B„p «
gyp. Thus, keeping only the relevant terms, neglecting
those that contribute to the boundary energy and after
the proper rescaling: @ = (Kp, ) P', p = (Kp, ) p',
x = (Kp, )'i x', and y = y' we represent the 2D smectic A
Hamiltonian as

where we have omitted primes and have introduced
a vertex A and what we call the spatial anisotropy
charge cu. Their bare values, which follow from (2), are

Ao = (K/p, 3) and coo = 1/Ao. Note that cu enters the
Hamiltonian (3) only as cox and generates the anisotropic
spatial rescaling x' = coax and y' = y. The symmetry (i)
holds for the Hamiltonian (3) (at Ace = 1) in the modified
form (i'): P' = P + e, p' = p, x' = x, and y' = y + ex.
Unlike (1) the only nonlinear term in (3) is the cubic
vertex. One can also check in the one-loop approximation
the equivalence of the renormalization flow equations
obtained with the Hamiltonians (1) and (3).

Next, we show that the 2D dipolar model is described
by the Hamiltonian (3). Consider the 2D dipolar interac-
tion between XY spins n„= (—sing, cos@) [12]:

2(x„—y~) (x„—y„) —(x —y)28„„

d xd yal„n„x lnx —ypvnv y, 4

where the strength of the dipolar force is g [11]. Using
the fact that In~x —

y~ is a 2D propagator of a scalar field

p with the dispersion (B„p) we represent the 2D dipolar
model as

H (J 1

P 2 8 P 8)'d x —(a P)2+ —(8 p) + ipse n

(5)

where J is the magnetic exchange constant [11].
Let us show that it is equivalent in the long-range

limit to the Hamiltonian (3) if J = p, and g = K (the
magnetic exchange and dipole constants correspond to
the smectic bending and compression constants). The
Hamiltonian (5) possesses the same symmetries (i) and
(ii) as the 2D smectic A Hamiltonian (2). As the dipolar
force stabilizes the long-range order [8], the ground state
of the Hamiltonian (5) is ferromagnetic with n„= 0 and

nY = 1. Thus, P « 1 in (5). After the proper rescaling,

P = (Jg) P', p = (Jg)' p', x = (Jg)'i4x', and y =
y', the Hamiltonian (5) has the following bare correlation
functions as k 0:

cdpk
(4-kA)o = (p-I pk)o =

k,

where coo = (J3/g)'i . The propagator (6) is invariant
under anisotropic scale transformations k' = Iky and
k„' = I~ k„, where 5 = 2. %'e shall ca11 the power 5
the dimension of the spatial anisotropy. Thus, one can
replace 8„ in the first and second terms of (5) by BY

The bare scaling dimensions of the fields P and p are

5& = ho = 2. Expanding the third term in (5) in powers
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of @ one can check that the only relevant interaction is the

cubic vertex. Thus, the 2D dipolar model is equivalent to
the 2D smectic A, and it is described by the Hamiltonian

(3) with Ao = (g /J3)'~ .
Let us now establish the scaling behavior of the Hamil-

tonian (3). After a proper regularization by momentum
cutoff ~k&, ~

~ A we make a scale change in A by the fac-
tor l, and exploit the fact that the long-range correlation
functions are cutoff invariant (see [13] for details). The
vertex A = A "A has the bare scaling dimension 6& =

~

whereas the charge cu = & is dimensionless 5„=0.
(Hereafter, tilde denotes dimensionless variables. ) Two
potentially relevant vertices @2 and @4 are forbidden by
symmetry (i'). Power counting shows that the Hamilton-

ian (3) is renormalizable in D ~ 3 [14(a)]. Its four terms

can be renormalized by four multiplicative renormaliza-
tion constants of the fields @ = Z&~ @R, p = Z„' pR and

charges cu = Z cuR, v lA = Z»AR. These depend on the

scale i according to the power law Z; = i ') (which re-

fiects the continuity of Z; as a function of e = 3 —D),
where g; is the anomalous scaling dimension of corre-
sponding field or charge (i = @,p, cu). Combined with

the bare dimension, the latter results in a total scaling
dimension /)»; = b,; + 7t;/2 (i = P, p) and 5 = 5 +

Our aim is to find exact relationships between Z; us-

ing symmetries (i ) and (ii) that render 21; and, hence, 5;
exactly.

The renormalization conditions are expressed in terms

of the one particle irreducible proper vertices as follows

[13]: I'PP(k) = k Z„ZP, I RR(k) = k2Z ZR, I'4, „(k) =
k„Z't Z~~, and I pp R( p, p —k; k—) = k, Z»Z Z'~2Zp,

with the one-to-one correspondence to the terms of (3).
The constant on the right-hand side renormalizes the

corresponding term of (3). The left-hand side is a sum of
diagrams of perturbative expansion in powers of A.

The n-vertex diagram that renormalizes the third term

can be written as Jt"A"t @ k(BYp)kI„(k), where the

integral over internal momenta I„has to be A "t2k„/k&, as

k 0. But any integral, which is a sum, cannot contain
contributions from k —A and k —0 multiplicatively.
Hence, the third term in (3) remains intact Z&~2Z'~2 =
1. Actually, the condition Z@ = Z~ = 1 holds. To see
this, we rewrite the Hamiltonian (3) in terms of its

quadratic form eigenvectors vr)k = [pk + i sgn(k„)pk]/2
and 'tr2k [)t)k i sgn(k )pk]/2:

H 1

g(~kg '2ra —k 7rak + ) lkx I')ra —k ~„b7rbk
k

+ 2i kru[(vr) + vr2) ]kkY sgn(k, ) (2r) —7r2) k) . (7)

Let us show that the first term in (7) is renormalized by
a single constant Z = Z Z, = Z„Z, . The fields zr are
real vr, k = m, k and the transformation (ii) interchanges
them m-&k m2 k. Then the identity

(ky '2rlk ~1 k) (ky ')r2k tr2 k)

holds, where ( . ) means averaging with the Hamiltonian

(7). The left-hand (right-hand) side of Eq. (8) is the

sum of all diagrams that renormalize the first term in

(7) at a = 1, Z Z, (at a = 2, Z„Z, ). It follows that

Z, = Z, . Invoking the definition of the fields m„we
obtain Zp = Z~. It shows that Z@ = Zp = 1 and that

there are no anomalous corrections to the dimensions of
the fields 5@ = 5„= -„.

To find Z„we return to the Hamiltonian (3) and

apply the transformation (i') to the correlation function

(@2a„p) = 0:

where the left-hand (right-hand) side is the sum of all

diagrams that renormalize the third (fourth) term in (3).
The equality follows then 1 = Z»Z (we put Z„= Z~ =--

1 on both sides).
The renormalization flow of the charge A is determined

by the P function dA2/dg =- —P(A), where g = lni.
In the one-loop approximation we find P(A) = —A2 +
A4/16vr and the stable fixed-point solution A'- = 16m.

Now, we argue that the fixed-point solution is robust in all

orders. Excitations of the ferromagnetic low-temperature

phase of the 2D dipolar model are spin ~aves. The charge
A determines the strength of the spin-wave interaction.
The bare Ao is small (remember that Ao —T)~'- [l l]) and

A grows with the scale g since P(A) & 0. The alternative

to a fixed point would be A growing to infinity. If so, the

interaction between spin waves becomes infinitely strong

and, hence, the ground state would be not ferromagnetic
as it is in the case of the 2D Heisenberg model [4„5].

The fixed-point solution means that AR = A = const
or Z» = Ql. It follows then that Z = 1/vti and rt

Upon rescaling the coordinates x' = xl~" and
y' = yl in such a way that the Hamiltonian (3) restores its

original form, we find the scaling relation 5„+5 = 2
3

and recover the result 5, =;—[2,10].
The two-point spin-wave correlation function in the

long-range limit is found from the Callan-Symanzik

equation [13]

where f (x) is an arbitrary finite function.
Finally, we establish the scaling relations for the 3D

dipolar model. It involves the 3D dipolar interaction

g d x d y d~n~(x) 8 an( a)y
X

between XY spins n~ = (—sin@, cos@) (P (& 1). The

kernel of this form can be viewed as a propagator of a

field p confined to 2D with the dispersion in momentum

space ~k~ p k pk/2g. After the proper rescaling x' =- Jgx,
y' = Jgy, p = Jgp', and )1 = @' and repeating all the

steps that lead us from Eq. (4) to Eq. (3), the 3D dipolar
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model can be written as

+
2 glk, lP-IPk, (12)

d x~
—(ay@) + i/a„p + into aYp ~

as k 0. From this we see that the 3D dipolar force does
not renormalize whereas the exchange interaction acquires
an anomalous scaling power in the y direction 5J = 3.

I am indebted to V. L. Pokrovsky for valuable discus-
sions and suggestions and to W. M. Saslow for critical
reading of the text.

where bare Ap = 1/J, top = J. Symmetries (i') and (ii)
hold for the Hamiltonian (12) as well. It is renormalizable
in D ~

2 (see, however, [14b]), as power counting shows.
The bare dimension of charge co and vertex A are hp = 0
and Az = 4. The hidden symmetry between @ and p
fields as seen in the representation (7) no longer holds

and those have different bare scaling dimensions 6„= 4

and A~ = 4, whereas the bare dimension of the spatial

anisotropy 5„= 2 now. Expanding in the one-loop
5 5

approximation around D =
2 in powers of e =

2
—D =

2 we obtain

dA

dg

1

2

27 m4

128m

9A.
to . (13)

128m

G(x) = (x'+ lyl'') ' 'f(x/lyl''), (14)

The first equation allows for a stable fixed-point solution
A2 = 64m. /27. Then, from the second one the dimension
of charge ~ follows: 6' 1

The argument that the one-loop result is indeed exact
is similar to the argument for the Hamiltonian (3). The
second term in (12) undergoes no renormalization and
because of the symmetry (i') the same is true for the third
term [see Eq. (9)]. The nonanalytical appearance of the
fourth term allows us to argue, following Pelcovits and
Halperin [9], that it remains unchanged as well. Thus, we
obtain three constraints on the renormalization constants:
Zp Zp 1 Zp Z 1 and Z&Z Zp Zp 1 where
the vertex constant is defined as I'~ A = ZqA~ now. At
the fixed point Zq = 1't~, and these constraints render

1 1=
6 and the anomalous dimension of the field g~ =

6
exactly. Rescaling the coordinates in such a way that
restores the Hamiltonian (12) to its original form, we
obtain the scaling relation 5„+d „=2 and, then, the
dimension of the spatial anisotropy 5„= 3.

These scaling dimensions can be expressed in the form
of the two-point long-range correlation function defined in
Eq. (10):
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H = Jddx —(a, p")2 + ip'a p'

G '(k) = gk„/(kY) + Jk (g/Jky)' (15)

where f(x) is an arbitrary finite function and the coordi-
nates are normalized by the so-called dipole length J/g.

Choosing f(x) in such a way that G(k) Gp(k) if
k —A we find

. MA M+ i y y.a,p'+ —(a.p )' . (i6)

(b) In case of the 3D dipolar model the proper Hamilton-
ian would be (16) with the fourth term being replaced by

k k
k, k, P-I Pk. (i7)

k
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