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Quantum Interference Effects in Inelastic Electron-Photon Scattering
in a 2D Ballistic Microstructure
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%e demonstrate a new effect where the electron-photon interaction in a ballistic microconstriction
plays the same role as impurity scattering does in a "dirty" system. In the presence of an external
electromagnetic field all relevant photons are coherent, and spatial interference effects in electron-
photon scattering become possible in spite of the inelastic nature of the collisions. These interference
effects can be controlled by the gate voltage or the frequency of the electromagnetic field. As an

illustration we calculate the photoconductance of a double point-contact geometry.

PACS numbers: 73.20.Dx, 73.40.Gk

a) Q b)
i% E

Quantum interference effects in impurity scattering
of electrons and the associated spatial localization of
electrons has attracted much interest during recent years
[1]. Electron localization is the result of phase coherent
multiple scattering in a system of randomly distributed
impurities and is a prominent effect in highly disordered
systems. In this Letter we consider a new type of effect
where electron-photon scattering in a baIlisric system
plays the same role as impurity scattering does in a "dirty"
system.

The system we consider is a 2D ballistic microstructure
subject to a homogeneous electromagnetic field. The mi-
crostructure is fabricated by putting a split gate configu-
ration on top of a GaAs heterostructure, thereby creating
a narrow constriction in the two-dimensional electron gas
[2]. The geometry of the microstructure depends on the

shape of the gate. A simple example of an adiabatic
(smooth on the scale of the Fermi wavelength) microstruc-
ture geometry is shown in Fig. 1(a). The electromagnetic
field, polarized in the y direction, induces transitions be-
tween different transverse energy states (modes) in the
system. Fig. 1(b) shows the transverse energies for dif-
ferent modes, as a function of x. For a transition to occur,
the energy quantum hen, where cu is the frequency of the

field, must correspond to the difference AE between two
transverse energies. For a certain h~ there exists —in the
geometry of Fig. 1(a)—only one point x* where such a
transition is possible, since AE depends on x. Thus the
electron-photon interaction is localized to a point in space
in the same way as impurity scattering is.

A more general geometry is shown in Fig. 2. In this case
there exists a number of points x,

"
satisfying b, E(x,') = hew.

The situation corresponds to a channel with a number of
localized scattering centers. The position of the scattering
centers can be changed by varying the frequency cu or the

gate voltage.
The analogy to impurity scattering becomes even

clearer when noting that in a microconstriction electron-
photon interaction can result in backscattering. This
happens when there is a transition between a propagating
and a nonpropagating mode. A mode is propagating
when its total energy is larger than its maximum trans-

verse energy, otherwise it is rejected by the constriction
and the photon induces backscattering of electrons in

the microconstriction; the resulting photoconductance
oscillations have been studied elsewhere [3] by us.

There is, however, an important difference between

impurity scattering and this type of electron-photon scat-
tering; the impurity scattering is elastic but the electron-
photon scattering is inelastic. It is well known that
inelastic scattering destroys the phase memory and makes
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FIG. l. (a) Simple example of an adiabatic microeonstriction
geometry with varying width D(x). An electromagnetic field,
polarized in the y direction, induces transitions between
different transverse energy states. (b) The corresponding set of
transverse energies as a function of x. A transition is possible
when AE(x) = hei where AE is the difference between two
transverse energies. In this particular geometry there exists
only one point x* where this condition is fulfilled.
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FIG. 2. An adiabatic microconstriction geometry of arbitrary
shape. For this type of geometry there exists a number of
points x,- where a photon induced intermode transition can
occur. The situation corresponds to a channel with a number
of localized scattering centers.
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quantum interference effects impossible [1]. In our case,
however, the electron-photon scattering does not lead to
phase memory loss. The reason is that our source of in-
elastic scattering, a classical electromagnetic field, corre-
sponds to a coherent photon state with one single phase.
Therefore the electrons do not couple to a large number of
degrees of freedom and their phase memory is preserved.
Interference effects are therefore certainly possible in our
system, even though the scattering is inelastic.

We will now illustrate such an interference effect in
a simple case. Consider an adiabatic geometry with a
widening, a "microwidening, " see the inset of Fig. 3. The
corresponding transverse energy will here (for each mode)
take the shape of a well which creates bound states in
the wide region. We want to investigate how the elec-
tric current through the microwidening is affected by the
presence of an electromagnetic field. Only such transi-
tions that change the current interest us, i.e., transitions
between propagating and nonpropagating (bound) states.
Clearly the photocurrent will be governed by the matrix
element for these transitions,

ieE
A p

= —,&~lp IP).

Here E is the amplitude of the electromagnetic field, py
is the y component of the electron momentum operator,
while e and m* are the electron charge and effective
mass. The electronic states iu) and ip) represent a
propagating and a bound state, respectively. The states
are characterized by the discrete mode numbers n and
m, respectively. Further, the propagating state in) is

characterized by the continuous longitudinal wave vector
~k while the bound state ip) is characterized by the
discrete wave vector k . The corresponding adiabatic
wave functions are

4' (x) = "
exp~ i dx'k„(x') i,

k„(—~)
k„x )

(2)

4m* . (("
+p(x) = „sini | dx'k (x') i,BTk x &„ /' (3)

where x is the turning point and T is one time period
of motion for the bound state. For the propagating state
the total energy E is a continuous variable, while the
total energy Ep for the bound state takes discrete values.
However, if we consider bound states with sufficiently
high energy, the energy spectrum is very dense and can
be approximated by a continuum.

In the calculation of the matrix element (1) we use
the stationary phase approximation [4], which is applica-
ble when the shape of the microstructure is adiabatically
smooth on the scale of the Fermi wave length. Because
of the symmetry in our geometry we have two stationary
points x* and —x* which both contribute to the integral.
These two contributions correspond to two different elec-
tron trajectories, where the electron is scattered by a photon
at either x' or —x'. The corresponding probability am-
plitudes will differ in phase, and their sum gives the total
amplitude. The interference between the two contributions
gives rise to oscillations in the matrix element. Taking the
laterally confining potential to be of the parabolic type [5],
the matrix element (1) is found to be
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where D(x) is the width of the microstructure, e'~ is an
overall phase factor, and the interference phase P can be
written as
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0
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FIG. 3. Conductance as a function of the dimensionless
parameter (kFd)2 for the geometry shown in the inset. The
width of the microwidening scales with d, the narrowest
microstructure width. It is clearly seen how the sharp steps
(dotted line) transform into an oscillatory structure when an
electromagnetic field is turned on (solid line). The frequency of
the field is 1.3 x 10' s '. The three graphs —vertically offset
for clarity —correspond to different choices of microwidening
length L and electromagnetic field amplitude E: (a) L =
1 pm, E=EO, (b)L =2@m, E =ED/2'/2, (c)L =4@m,
E = Eo/2, where Eo = 300 V/cm.

The interference occurs because there are two possible tra-
jectories for an electron in mode n being scattered to mode
m. The phase P expresses the phase difference between
the two trajectories, and it depends on the frequency ~ and
the microstructure width.

The shape of the laterally confining potential is not
particularly important. We would have gotten essentially
the same result if we, in the above calculation, had used a
different type of potential, like a square-box potential.

Our next step is to calculate the current in order to
demonstrate how the interference oscillations show up in
the photoconductance [6]. We formulate the problem as a
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set of kinetic equations for the electron population in each
mode [3]. The electron-photon scattering enters in a col-
lision term that mixes the populations in different modes.
Only transitions between propagating and nonpropagat-
ing states infIuence the photocurrent; there are two types
of such transitions: (i) propagating to bound state and

(ii) bound to propagating state. While weak electron-
photon scattering results in small deviations from equi-
librium within the propagating modes, it leads to a strong
nonequilibrium population of the bound states. Hence this
part of the problem has to be treated nonperturbatively. A
balance equation, which ensures the time independence of
the total number of electrons in the bound states, was de-
rived and solved in the limit of small bias voltage. The
conductance, which in principle depends on the popula-
tion of both propagating and bound states, can then be
expressed in terms of the population of the propagating
states only. Hence we get the following simple-looking
result for the zero bias conductance [7]

0

6 = e g v ——glA pl 8(Ep —E —h~)
Bp h p

(7)
(Details of the calculation will be published elsewhere
[8].) The first term is the ordinary quantized conduc-
tance which is independent of the electromagnetic field.
The second term is the photoconductance, and it is pro-
portional to )A pl~. Inserting our expression (4) for the
matrix element, taking f to be the equilibrium Fermi dis-
tribution function at zero temperature, and introducing the
dimensionless frequency 0 =hew/EF, the photoconduc-
tance is found to be:
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O[1 —&(n + —,)] D(x*) (1 + cos 2$)n+1
k.(.*) D'( ")

XO[kFd —(2n + 1)]O[2n + 3 —kFd (1 + 0)],
(8)

where k„(x*) = kF[1 —Q(n + 1/2)]' . The step func-
tion O[1 —Q(n + 1/2)] expresses the condition that the

stationary point x* must be in the classically allowed
region for the electrons, a condition imposed by the ex-
istence of turning points. The other two step functions
express the conditions that mode n (the initial state) must
be propagating and mode n + 1 (the final state) must be
nonpropagating. In the wide part of the microstructure
the width D(x) is taken to be

1+gD(x)=dl 1+ (2/L) )'
where L is the length of the wide area, d is the
smallest width, and d(1 + g) is the largest width of the
microstructure, see Fig. 3. Since the energy quantum her

must correspond to the energy difference AF between the
transverse states, there is a restriction on the frequency
cu. The smallest AF. , corresponding to the widest part of
the geometry, and the largest AF. , corresponding to the
narrowest part of the geometry, set lower and upper limits
on the frequency:

2 2

(kid) (1 + g)
(10)
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Now we will present the results of a numerical evalu-
ation of the photoconductance, Eq. (8). The parameters
used have been taken as follows: the Fermi temperature
TF = 200 K, the dimensionless frequency A = 0.3 which
corresponds to ~ = 1.3 X 10' s ', and the geometry
parameter g = 4. In Fig. 3 the total conductance (solid
line) is shown as a function of microstructure width

for three different electromagnetic field amplitudes
and microwidening lengths: (a) L = 1 p, m, E = Eo,
(b) L = 2 p, m, E = Eo/~2, (c) L = 4 p, m, E = Ep/2,
where Eo = 300 Vlcm. The power of the electromag-
netic field Fo in a volume V = 10 6 cm is 0.2%. The
dotted line shows the conductance in the absence of any
electromagnetic field. It is clearly seen that the sharp
steps transform into an oscillatory structure when an
electromagnetic field is turned on. A comparison of (a),
(b), and (c) shows that the oscillations become more rapid
as the length of the microstructure increases and that the
field strength required to observe the effect decreases
with increasing microstructure length. The oscillations
are very similar to the pattern observed when there are
impurities present in the system [9].

An interesting feature here, and a crucial difference
to the case of "real" impurities, is that only a fraction
of the step shows oscillations and that the number of
affected steps is limited. The oscillating fraction of the

step decreases with increasing mode number and finally
reaches zero. The reason for the oscillation cutoff is the
condition that the final state of the transition, mode n + 1,
must be nonpropagating, which is expressed through

the step functions in Eq. (8). The fraction 5 of the

step, which shows oscillations, is given by the following
expression

1 —fl (n + 1/2)
1+0

which shows how 5 depends on mode number and fre-

quency. It is also seen in Fig. 3 that the amplitude of
the oscillations increases with step number. This is ex-
pected from the way the photoconductance depends on
the mode number, see Eq. (8). Another feature is that

the period of the oscillations increases with the micro-
constriction width, which is understood by noting that the

phase P is roughly proportional to the square root of d.
Concerning the possibilities to experimentally verify

our predictions, there are two possible mechanisms that

could destroy the interference effect; temperature smear-

ing of the Fermi distribution function and relaxation of
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the electrons leading to excitation of phonons. For the
temperature smearing our estimate is that the tempera-
ture T must satisfy T « TF6O/(kFd), where Bo is the
period —in units of (kFd)2 —of the conductance oscilla-
tion (cf. Fig. 3). The strongest restriction is found at the
first conductance step of Fig. 3(c), which gives the condi-
tion T &( 50 K.

As for phonon scattering, the requirement is that Iph&&L
where l~h is the phonon mean free path and L is
the size of the microwidening. The phonon mean free
path is given by l~h = (I/g)(vF/toD) (IitoD/E, „,), where

g is an electron-phonon coupling constant, coD is the
Debye frequency, E,„, is the excitation energy, and vF
is the Fermi velocity. In our case we have E,„, = 0.3EF
and taking ~D = 10' s ', vF = 10 m/s, and g = 1 we
obtain thc phonon mean fr cc path Iph = 10 ]Km . Since
the length L of our microwidening, in the largest case, is
taken to be 4 p.m, we believe that excitation of phonons
should not destroy the interference effect. At the same
time we note that the phase memory of an electron trapped
in the bound state is lost, and therefore interference effects
involving electrons moving out of the bound state will be
washed out. In our model we have calculated interference
effects as a result of electrons moving into the bound
state, which is the only relevant process for our choice
of parameters. However, if we decrease the frequency of
the electromagnetic field by a factor of 10, the phonon
mean free path will instead be limited by the temperature,
and at low temperatures we can expect interference effects
involving electrons moving out of the bound state to show
up as a fine structure added to the present results.

In conclusion, we have shown that it is possible to pro-
duce a special type of quantum disorder in an initially
"clean" system by applying a homogeneous electromag-
netic field. An important role is played by the geometry.
The electromagnetic field transforms an arbitrary geome-
try into a system of scatterers, where the configuration of
the scatterers depends on the particular geometry in ques-
tion. One reason why this method of creating disorder is
appealing is that by varying the frequency of the electro-
magnetic field we can effectively move the position of the
impurities without changing the geometry of the experi-
ment. Our estimates of the electromagnetic field strength
and frequency needed to observe the interference effect
indicate that an experimental realization of our predictions
is possible [10].

Another interesting aspect is that by varying the am-
plitude of the electromagnetic 5eld we can vary the cross
section of scattering. This opens up the exciting possi-
bility to study the transition from weak to strong locali-
zation, which might be possible in this type of system.
Even if the scattering from a single scattering center is
weak we can expect a finite localization length because
of the one-dimensional character of our system. There-
fore we expect size effects in the electron transport, when
the length of the microconstriction becomes comparable

with the localization length. Scattering from "real" impu-
rities should not destroy the localization effect, at least not
when there are only a few modes present in the system.
However, there is need for a more thorough investigation
in order to clarify how far the analogy with localization
caused by static impurity disorder can be extended; this is
still an open question.
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