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We observe a strong modulation of the low temperature in-plane conductance Gi~ of coupled quantum
wells (QW's) by an in-plane magnetic field B~~ and attribute this to an anticrossing of the two QW
dispersion curves. The anticrossing produces a partial energy gap, yielding large, B~~-tunable distortions
in the Fermi surface and density of states. Sweeping B~~ moves the energy gap through the Fermi level„
with the upper and lower gap edges producing a sharp maximum and minimum in 6~i, in agreement
with theoretical calculations. The gap energy is directly determined from the data.

PACS numbers: 73.20.Dx, 72.20.My, 73.40.6k

The unique experimental properties of double quantum
well (DQW) structures arise from the fact that the
two parallel two-dimensional electron gas (2DEG) layers
contain an additional electronic degree of freedom in the
growth direction. Thus an electron occupies either the top
or bottom quantum well (QW), or in the case of balanced
QW densities the symmetric or antisymmetric state. This
additional degree of freedom can be controlled by varying
the thickness of the barrier between the two QW's, as well

as by applying external gate voltages and magnetic fields.
DQW's thus provide an ideal platform for studying the

tunneling dynamics between two parallel 2DEG's.
In high magnetic fields perpendicular to the growth

plane B&, the electrons' kinetic energies are quenched and

Coulomb interactions dominate, leading to a tunneling gap
[1] in the interwell tunneling conductance G~(B&) and

observation of a Coulomb-driven correlated bilayer state

[2,3] in the in-plane conductance G~~(8&). By constrast,
in a purely in-plane field B~~, single particle tunneling

dynamics dominate the interactions between the two
2DEG's. The primary effect of B~~ is a linear transverse

shift in the canonical momentum hk of electrons in

one QW relative to the other. This produces a strong
modulation [4—7] of the tunneling conductance G~(8~~)
due to the conservation of energy and k. To date,
however, the in plane conducta-nce G~~ of coupled DQW's
in B~~ has received little attention [8].

Here we report clear observation of a partial energy

gap (PEG) in strongly coupled DQW's due to a B~~-

induced anticrossing of the two QW's dispersion curves

[9]. B~~ causes a linear transverse shift in k of the

dispersion curve of one QW relative to the other, resulting

in an anticrossing and the opening of a PEG when the

coupling is sufficiently strong. Under these conditions the

DQW has a multicomponent Fermi surface whose shape

and topology are tunable by B~~. The electronic density
of states D(e) and group velocities are dramatically
distorted at the upper and lower edges of the PEG
(e.g., a Van Hove singularity appears). Sweeping B~~

causes the gap to pass through the chemical potential p„,

TABLE 1. Sample parameters.

Sample

A

B
C

w/t

150/25
100/35
150/15

n (10" cm -')

1.4
1.2
0.7

p, (10' cm'/V s)

2.7
1.2
0.6

2.2
0.6
0.2

resulting in two large sharp features in G~~, a maximum
and minimum, corresponding to the upper and lower gap
edges, respectively [10]. The B~~'s at which the features

appear depend on surface gate bias in good agreement
with a simple model and allow the gap energy e& to
be directly determined. Theoretical calculations of G~I

are consistent with the data. In addition, G~~ is found to
depend strongly on the angle between the applied electric
field and B(i, due to the highly anisotropic Fermi surface.
We note that this Fermi surface is similar to that observed
in tilted Si inversion layers nearly two decades ago [11],
except that the present Fermi surface is tunable with B~i.

We studied three modulation-doped DQW structures

(A, 8, and C), each consisting of two GaAs QW's of
equal width w separated by an A103Ga07As barrier of
thickness t. Table I lists the values of w and t, and the

densities nl, n2 and mobilities p, l, p, q of the top and bot-
tom QW's, respectively, for gate voltages VG ——0. Four
terminal low-frequency lock-in measurements were per-
formed at T = 0.3 K on Hall bars with Cr/Au top gates.
n j and n2 were determined from the quantum Hall effect
and Shubnikov —de Haas (SdH) oscillations in 8~, fol-

lowed by a rotation in situ for measurement in B~~, with

the residual component of B less than 0.005 T.
The central experimental result of this paper is shown

in Fig. 1. The inset depicts the in-plane resistance at

B~~
= 0 of a 12 section of sample A as a function of

V~. A weak plateau appears at V~ = Vd, ~~
= —0.29 V,

when only the top QW is depleted. Similarly, in 8& the

beatings in SdH oscillations characteristic of two 2DEG
layers [8] disappear for Vq ( —0.29 V. Figure 1 shows
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FIG. 1. Normalized Gii vs Bii of sample A for different VG,
offset from one another by 2%. Arrow indicates bc(ki + k2)/ed
for VG = 0, with d from a Hartree self-consistent calculation.
Inset: zero-field resistance vs VG. Arrow indicates Vd p].

the normalized Gii(Bii) for several different negative VG.
For VG = 0, a sharp maximum appears at B,„=5.8 T,
followed by a sharp minimum at B;„=6.4 T. As VG

decreases, both features move to lower Blii, with B,
„

moving more rapidly than B;„.The strength of the
features decreases once VG ~ —0.2 V, until at VG = Vd, ~l
they almost completely disappear. For all samples, once
the top QW is depleted Gii is only weakly monotonic in

Bii ( 14 T. This rules out as a source of the features the
formation of cyclotron orbits within the individual QW's,
expected semiclassically when Bii ) 4hc/ewz (=12 T for
sample A). Thus the features are due solely to inter-QW
interactions.

The data can be understood by noting that Bii (in the x
direction) displaces the transverse crystal momenta k~ of
one QW relative to that of the other by AkY = edBiii/hc,
where d is the center-to-center distance between the two
2DEG layers. This results in an anticrossing of the two
dispersion curves due to tunneling between the QW's,
as shown in Fig. 2. We now calculate the effect of the
anticrossing on D(e). The Hamiltonian is given by the
sum of e, (k, ) = hzk2/2m* and

2p' h' & eBz&H= '~+ ~ kY
— +V(z),2m* 2m* ( hc )

where the effective mass m* is assumed equal in the
QW's and barrier, and V(z) is the square-well DQW po-
tenti8. The effect of a Hartree potential will be dis-
cussed later. For narrow QW's, only the two lowest
eigenvalues e (k~) of Eq. (1) are relevant. For a sym-

metric DQW structure e corresponds to the symmet-
ric (e ) and antisymmetric (e+) ground states. The
eigenvalues e (kY) in the tight-binding approximation for
w = 150, A t = 25 A., and unequal QW depths of 280
and 278 meV, corresponding roughly to sample A with
Vt- = —0.1 V, are shown on the left of Fig. 2 for Bii = 0,
0.7, and 7.5 T. At Bii = 0 the e (kY) curves are para-
bolic and D(e) is constant for each energy branch, with
the energy splitting between the two branches due to
both the unequal QW depths and tunneling (i.e., mixing
or coupling) [see Fig. 2(a)]. For Bii = 0.7 and 7.5 T, in
the absence of coupling the Fermi circles tough tangen-
tially on the inside and outside, respectively, at the same
p, = 6.3 meV, corresponding to 5k~ = ki ~ k2. These
two cases exhibit two types of anticrossings: Type I oc-
curs when hkY ( max(ki, kz), shown in Fig. 2(b). Near
the anticrossing, the slopes of e (kY) deviate but do not
change sign, only slightly changing the group velocity.
Further, the changes in D(e) due to each energy branch
cancel one another. Thus the effect on Gii(Bii) of a type I
anticrossing passing through p, is negligible, in accord
with the data of Fig. 1, for which no features appear at

Bll = hc(ki —kz)/ed.
A type II anticrossing occurs when Ak ) max(k&, k2),

as shown in Fig. 2(c). In this case the slopes of e (k~)
change sign, and a PEG of width eG = 2 meV appears.
For high fields aG is insensitive to Bii and is due mainly
to mixing. Hence aG = hsAs, the Bii = 0 symmetric-
antisymmetric gap observed when the QW depths (den-
sities) are equal [2]. (As discussed later, eG and b, sAs
decrease to -1.4 meV when the Hartree potential is in-
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FIG. 2. For sample A, calculated dispersion e(k~) (left) both
with (solid lines) and without (dotted lines) mixing; calculated
density of states D(e) (middle) for lower energy branch (dotted
line) and both energy branches (solid line); and sketch of Fermi
surface for /i, = 8 meV (right); for Bt = (a) 0 T, (b) 0.7 T, and
(c) 7.5 T.
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2e
Gll =

A
g(u ' vk) I. fk]rk.

k

Here 7k is the relaxation time given by

—1

k

2m.N
g(I+a'k I &~(ek ek')2 (2b)

eluded. ) The gap produces dramatic distortions in the
electron group velocities and D(e). At the upper gap edge
the dispersion is nearly parabolic and a sharp steplike re-
duction appears in D(e). States at the upper gap edge
have low velocities and contribute little current, yet make
significant contributions to the scattering rates of elec-
trons elsewhere on the Fermi surface. As B~~ increases,
pushing the upper gap edge through p„electrons are no
longer scattered into these states, yielding the observed
maximum in Gll. The lower gap edge, by contrast, has
a saddle-shaped dispersion of the form e(k„,k~) = Rp +
(hk„)2/2m* —(hkY)2/2m', where eo is the saddle-point
energy, and m' is determined by the saddle-point curva-
ture. This form produces a Van Hove singularity at ao,
resulting in D(e) becoming infinite as D(e) ~ InIe —epI,
as shown in Fig. 2(c). Since the saddle-point states have
zero group velocity, when B~~ is swept and the lower gap
edge passes through p„electrons are divergently scattered
into states that carry no current, yielding the sharp mini-
mum in Gi(.

Following this qualitative discussion, we calculate
Gll(Bll), in the direction u of an applied external electric
field, using [10]
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FIG. 3. Calculated Gll vs Bll for a symmeuic DQW with w =
150 A. , t = 25 A, and conduction band offsets of 280 meV,
similar to sample A at VG = 0. Here r„and 7I are the scattering
times in the upper and lower branches. The maximum and
minimum move to the positions indicated by arrows when the
Hartree potential is included.

viations from the 7„=7~ approximate result. The features
are rounded when damping is included. In a Hartree self-
consistent calculation (HSCC), the effective d is increased
from 175 to 195 A, and B,„andB;„arereduced by
this ratio to the positions indicated by the arrows, yielding
good qualitative agreement with the data.

We now turn to the effects of gate bias. In Fig. 4 we
plot B~;q = (B;„+B,„)/2vs VG for all three samples.
B;d corresponds roughly to the field hc(k& + k2)/ed at
which p, lies in the middle of the PEG. To a first
approximation, negatively biasing VG linearly decreases
n~ while leaving n2 unchanged. This simple model gives

where vk =h 'Vkek, ek = e„(k,) + e (kY), k includes
implicitly the indices ~ for the upper and lower energy
branches, and A is the area of cross section of the QW's.
Here Nl is the total number of randomly distributed static
scattering centers, and fk = f'(ek) is the energy deriva-
tive of the Fermi function. The matrix element Vk k(z) of
the impurity scattering is assumed to be isotropic. The an-

gular brackets in Eq. (2b) denote the average over the im-

purity distribution. Though the scattering-in term should
be included in a more general situation, our purpose here
is to demonstrate qualitatively the features in the data.
Accordingly we make a further simplifying approximation
by ignoring the momentum dependence of Vk k = Vl, ob-
taining r '(e) = rrVI NID(e), where D(e) includes spin.

Figure 3 shows an evaluation of Eq. (2) for w = 150 A.,
t = 25 A. , and ni = n2 = 1.5 X 10" cm 2, correspond-
ing to sample A at VG = 0. G~~ exhibits the sharp maxi-
mum and minimum corresponding to the upper and lower
PEG edges passing through p, . Three different ratios of
the scattering times in the upper (r„)to lower (rI) energy
branches are shown. A numerical calculation, based on
Eq. (2b), of Gll in the presence of two delta-impurity sheets
at the left interfaces of the QW's shows only negligible de-
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FIG. 4. (a) Plot of B;d (squares) and AB (triangles) for
sample A. Using sample A parameters, dotted lines are plots
of Eq. (3) for various d, while dash-dotted lines are plots of
Eq. (4) for various sG. (b) Same as in (a), but for samples B
(solid symbols) and C (open symbols), and only showing the
best fits.
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Bmid as

& C, &ac&2~
B~;d = (VG Vd, pi) + Jnp (3)

e " j ed

where CG is the real capacitance between the gate and top
QW calculated from the samples' growth structures, and

n2 and Vd, pi are known from gate scans and measurements
in Bi. In Fig. 4 we show fits of Eq. (3) to the B;d data,
with d as the only adjustable parameter. HSCC's give
values for d of 195, 140, and 180 A. for samples A, B,
and C, respectively, in relatively good agreement with the
data.

Also plotted in Fig. 4 are AB = B;„—B,
„

for the
three samples. Using the same model and assuming that

B,„and B;„occurat hc[ki + k2 ~ (b, ki + Ak2)j/ed,
where hkiz = aG/(2ae/ak„) and ae/ak, , is evaluated
as (2n.ni z)'t~h2/m*, we obtain

—
( )

-1/2

AB = (VG —Vd, ~i)e
EGm c+ 112
ed6Q2n.

(4)
Fits of Eq. (4) to the b, B data, using the values for
d obtained from the fit of Eq. (3) to B;d, are shown
as dash-dotted lines, with aG as the only adjustable
parameter. The best fits for samples A, B, and C are
obtained for eG = 1.1, 1.8, and 3.0 meV. These are in
fair agreement with the values of 1.4, 2.0, and 3.4 meV
obtained from the HSCC's, demonstrating that eo can be
directly obtained from the data. Since the approximations
used in Eq. (4) break down as eG becomes large, the
discrepancy is largest for sample C.

The data shown until now have all been for an angle
8 = 0' between the direction u of applied electric field
and B)i. Because the Fermi surface is highly anisotropic,
and also because of the (u vq)2 factor in Eq. (2a), we
expect a large anisotropy in Gii with 8. In Fig. 5 we
show Gii of sample B for several values of 8. (Because
8 was varied by etching multiple Hall bars on the same
chip, Bi was kept below 0.005 T and equal for all 8.)
As expected, Gii shows an unusually large degree of
anisotropy, with the size of the anticrossing features for
8 = 90 approaching 30%, nearly a factor of 3 larger than
for 8 = 0'.

In summary, we have observed an anticrossing of the
two QW dispersion curves in strongly coupled DQW's in

Bii. The resulting energy gap produces a sharp decrease
in D(c) at the upper gap edge, and a singularity in D(e)
at the lower gap edge. Sweeping Bii moves the gap
through the Fermi level, with the upper and lower gap
edges producing a sharp maximum and minimum in Gii, in
agreement with theoretical calculations. The gap energy
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FIG. 5. Normalized Gti(Bii) of sample 8, for several different
angles 8 between the direction u of electric field and Bii.
Inset: experimental geometry.
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