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Harmonic-Potential Theorem: Implications for Approximate Many-Body Theories
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We consider interacting particles in an external harmonic potential. We extend the 8 = 0 case
of the generalized Kohn theorem, giving a "harmonic-potential theorem" (HPT), demonstrating rigid,
arbitrary-amplitude, time-oscillatory Schrodinger transport of a many-body eigenfunction. We show

analytically that the time-dependent local-density approximation (TDLDA) satisfies the HPT exactly.
Other approximations, such as linearized TDLDA with frequency-dependent exchange correlation kernel
and certain inhomogeneous hydrodynamic formalisms, do not. A simple modification permits such

explicitly frequency-dependent local theories to satisfy the HPT, however.

PACS numbers: 71.45.6m, 21.10.Re, 73.20.Dx, 73.20.Mf

The Kohn theorem [1]concerns particles of mass m, and

charge e with arbitrary momentum-conserving interactions
plus a static external B field: It states that linear response
to a uniform electric field Eo exp( —itot) yields a sharp res-
onance at to = co, = eB/mc, corresponding to cyclotron
motion of the center of mass. Brey et al. [2] added an ex-
ternal scalar harmonic potential V,„,(r) = Kz2/2 extend-

ing throughout all space. Their result (the "generalized
Kohn theorem" or "GKT") also predicts sharp resonances
for a uniform exciting field. In the electron-gas con-
text, the static external harmonic potential can be gener-
ated, via Poisson s equation, by a uniform positive charge
background extending throughout space, with charge den-

sity eno = aK/4n e, and this can be mimicked in GaA1As
quantum wells, wires, and dots [2—6]. (Here a is the back-
ground medium's relative dielectric constant. ) This paper
concerns only the case B = 0, for which the single GKT
resonance frequency coo = (K/m*)'I2 is also equal to the
plasma frequency at~ = (4n.noe2/em*)'t~ corresponding
to the fictitious background density no. The GKT reso-
nance then corresponds to a "sloshing" or transverse plas-
mon motion of the electron gas.

Note that the GKT does not apply to a charge-neutral
electron gas as in a neutral metal slab of finite thick-
ness: There the electron gas samples the nonparabolic
linear region of external potential lying just outside the
jellium edge [4].

There is a fundamental difference between systems
covered by the original Kohn theorem and those covered
by the GKT: Unlike a B field, the harmonic scalar
potential confines the density spatially so that, in the
context of Coulomb-interacting systems, the GKT applies
exactly to bounded, non-neutral electron gases with strong
edge inhomogeneities [4]. The GKT is thus one of
the few exact results known for the dynamic properties
of an inhomogeneous, interacting many-particle system.
We will show here that a slightly generalized GKT
provides an interesting constraint on the general form
of approximate theories of time-dependent phenomena in

arbitrary inhomogeneous interacting systems.

The GKT Hamiltonian for B = 0 with a spatially
homogeneous time-dependent driving field E = F(t)/e—
1S

H(r~, r2, . . . , rtv t) = Ho —F(t) g. r, ,

H() =
g=l

h-'&al
+ —r) K. r,

2m (ar, ) 2 '

+ V((r, —r, J).

(2)

Consider applying a position-independent, time-dependent
shift x(t), to all coordinates in 0'o. Now construct the
following state:

P H pi (I'~, ra, . . . , r,v, t )

= exp( —iEoh t —iNS(t) + iNh rn R) (3)
—1

dx
dt

'po (r i ri i ~ rtv) .

Here r, is a position operator relative to a moving origin
and R is the center of mass operator:

r, = r) —x(t), (4)

Here V is an arbitrary interparticle potential which de-

pends only on coordinate differences. By suitable choice
of the spring-constant matrix K one can describe para-
bolic quantum wells [2—4], non-neutral quantum wires
or dots [5,6], positively charged metal spheres, Hooke's
atoms [7], or spherical nuclear models [8].

To achieve the desired constraint condition on many-

body theories we need the following slight extension
of the GKT, which we shall term here the "harmonic
potential theorem" (HPT). Let pro be any many-body
eigenstate of the Hamiltonian Ho from (1), so that
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The phase angle in (3) is

S(t) = it ' —x(t')' ——x(t') K . x(t') dt'. (5)
tp 2

Thus WB PT satisfies the time-dependent many-body
Schrodinger equation provided that x(t) satisfies the
classical driven harmonic-oscillator equation

mX = —K x + F(t). (7)

The many-body density ~WHPT({r, },t)~ from (3) is
~%0({r, —x(t)})[2, which is just the many-body density
of the stationary state %0, rigidity displaced by x(t).
The same holds for the one-body density nHPT(r, t), and
indeed for the entire many-body wave function, apart
from the phase factor shown explicitly in (3). Note that
the center of mass is tied to the accelerated (r) frame
executing driven oscillator motion, and in this frame (3)
is just the stationary state %0. The phase factor in (3)
transforms one back to the rest frame. Note also that
a nontrivial free oscillator motion is demonstrated by
(6) when F(t) = 0. These results constitute what we
term here the HPT. Much like the exchange (xc) hole
normalization theorem in static xc theories, this theo-
rem implies constraints on time-dependent many-body
approximations.

We first prove analytically that the unlinearized ver-
sion of the standard linearized adiabatic time dependent
local density approximation (TDLDA) [9,10] satisfies the
HPT. In this formalism the density is formed from time-
dependent one-body wave functions satisfying

(—t7 V—+ V,„,(r, t) + V„, (r, t))P, (r, t) = 0,
8 h

m

(8)
where the Hartree potential VH and the xc potential
V„, = &„,(n(r, t)) are related adiabatically (i.e., at equal
time) to the density. In the static case, nonlinear TDLDA
reduces to local-density Kohn-Sham (KSLDA) theory,
and p, (r, t) is just exp( ice, t)p, (r)—, where it, and hen,
are the Kohn-Sham eigenfunction and eigenvalue. Let
the static KSLDA ground state for the HPT Hamil-
tonian Ho have a particle number density no(r), oc-
cupied wave functions @,(r) and eigenvalues hcoj. , a
Hartree potential V00(r) and exchange-correlation poten-
tial Vo„,(r) = p,„,(no(r)). Now consider the HPT case for
which V,„,(r, t) = (1/2)r . K . r —F(t) . r. The HP the-

By performing space and time differentiation of (3),
canceling some equal and opposite terms which arise
from differentiation of the phase factor and of the wave
function pro, and using (2) we obtain

ih —H—({rj},t) VHPT({r,},t)a

at

= —[mx + K x —F(t)] gr, qtHpr ((r;), t). (6)

orem requires that n(r, t) = no(r —x(t)) also satisfies the
equations, provided x(t) is an oscillator motion satisfy-
ing (7). As noted earlier, in the moving frame the cor-
responding HPT many-body state is just the ground state
which corresponds to KSLDA wave functions il5, (r) with
r = r —x. Transforming back to the rest frame via a
phase factor, we try TDLDA wave functions

@,(r, t) = exp[ —iS(t) —itdi, t + tmh 'x . r] x

Po(r —x(t)),

with S given by (5). The wave functions (9) square
and sum to the required HPT density no(r —x (t)), and
the corresponding Hartree potential is Vo(r —x(t)). In
the adiabatic TDLDA for which, crucially, V„,(r, t) =
p,„,(no(r —x(t))) = Vo, (r —x(t)), one verifies by direct
space and time differentiations that (9) satisfies (8) when

(7) holds; the working is similar to that for Eq. (6). Thus
we have an exact TDLDA solution for HPT motion.
By choosing )Ito to be the many-body ground state
and then linearizing this solution, we deduce that the
small-motion HPT is satisfied by the usual TDLDA [10]
which is linearized about the KSLDA ground state. In
terms of the bare KSLDA susceptibility (casual density-
density response) yo formed by perturbation theory [9—
11] from the static Kohn-Shain orbitals, we can express
the linearized TDLDA as follows in the time domain:

8 (r, rn) =f dddr'g (r, r'0, t —t )x'
[Bv'"'(r, t') + Bv (r', t') + Bv"'(r', t')]. (10)

In (10), Bv"'(r, t) = f„,( n(or))Bn(r, t), where f„,(n) =
dp, „,/dn The abo.ve rigidly moving HPT-TDLDA so-
lution shows that (10) is satisfied, for a harmonically con-
fines system with BV,„, = —F(t) r, by a density pertur-
bation

Bn(r, t) = —x(t) Vno (r),

where x(t) is a classical motion obeying (7).
Generalizing TDLDA, Gross and Kohn [ll] showed

that driven time-dependent response starting from the
ground state is described exactly by an equation of the
form [10] with the same go, except that f„, is nonlocal
and time delayed (i.e., frequent dependency, in Fourier
space). They further proposed keeping the time delay
but using the spatial local density approximation, giving
f„,(no(r), ~). This local, time-delayed approximation
("DLDA" for brevity) violates the HPT, as we now
show. Consider a HPT system (with slab geometry,
r = z, for simplicity) in the ground state. A small
steady z-independent force F is switched on at t = 0.
The corresponding classical motion from (7) is of the
form x(t) = 8 (t) a[1 —cos(coot)]z, with a = const and
~0 = (K/m)': Equation (11) then gives the density
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perturbation Bn"~(r, t), which has to satisfy both (10)
and the DLDF version of (10). Subtracting these versions
we find

0 = dt'dz'yp z, z, t —t Av

where b, v„, = BvD"D" —Bv„,D"DA. Now (12) represents
the difference in linear density response of independent
electrons to two different potentials, starting at t = 0
with the common ground state. For (12) to be zero, the
linear form of the Runge-Gross theorem [see Ref. [12],
especially Eq. (6) which is explicitly linear] thus requires
Av„, to be independent of z for t just greater than 0. We
show that it is not. For the HPT density perturbation,
denoting f " " —f = b,f„„wehave

b, v„, (z, t) = Af„,(np (z), t —t')X
0

(13)

Now data in Ref. [11] imply that 6f„,(n, r) =
e(r —0 )[A(n)B(r) + B(r)], where A(n) = f„,(n, cu

{x{) —f„,(n, tp = 0) is positive for any n & 0, and B(r)
depends nonsingularly on time for r ) 0. As t 0, (13)
then gives

Av„, (z, t) = — &opt aA(n—p(z)) + O(t ). (14)
dz

Equation (14) vanishes only at extrema of the (inhomo-

geneous) ground-state density where dnp/dz = 0, so (14)
does depend on z. Thus DLDA does not satisfy the HPT.
(A minor modification allows it to do so, however; see
below. )

Another case of HPT incompatibility occurs in inho-

mogeneous hydrodynamics, which can be regarded as a
frequency-dependent LDA for the kinetic energy. The
lowest-order inhomogeneous hydrodynamics theory [13—
15] can be motivated starting from a Thomas-Fermi [13]
condition Vp(r) + eF(np(r)) = {{L for the ground state.

Taking a spatial gradient one obtains
R2

Fp,„,(r) + Fp;„, (r) —n V [3~ np(r)] = 0, (15)
2m

for unforced motions at frequency ai in the uniform elec-
tron gas, it yields

P V + cu —cu 6n = 0.P

BF = —x(t) . VFp;„,(r)

= —x(t) V —Fp,„, + nyV np
2/3

= —K x(t) —ayx(t) V V np
2/3 (18)

with P = n'vF/3. But it is well known [14,15] from
microscopic Lindhard response theory that high-frequency
phenomena (e.g. , plasmon dispersion) in a uniform gas
are properly described by P2 = 3vF/5, corresponding to
n' = 9/5. Thus a frequency-dependent coefficient u is
needed if both the static and high-frequency limits are to
be described.

Within dispersive hydrodynamics, one commonly [14—
16] described jellium via the uniform-gas dynamic equa-
tion (17) or similar, while description of edge inhomo-
geneities, both in the ground state and the dynamics,
is avoided and replaced by boundary conditions at the

edge. This approach is not of interest here, because we
wish to see what can be learned by demanding that the
HPT be satisfied, and this theorem concerns rigid dis-
placement of a self consisten-t inhomogeneous ground-
state density. Thus the only suitable hydrodynamic theo-
ries are those which consistently describe both the inho-
mogeneous ground state [13,17] and the motions around
it. We will find that the effective frequency dependent of
o, , while ensuring a correct uniform gas behavior, causes
violation of the HPT for a class of systems including in-

homogeneous non-neutral electron gases.
To see this, consider [13,17] the self-consistent in-

homogeneous ground state density np(r) satisfying the
Thomas-Fermi equation for the HPT Hamiltonian Hp. In
free [F(t) = 0] HPT motion, n(r, t) = np(r —x(t)) yield-

ing a Hartree force F;„,(r, t) = Fp;„,(r —x(t)) while F,„,
remains fixed at Fp,„,(r). The fluid velocity is u = Bx/Bt
and the continuity equation is satisfied identically by the

present n(r, t). Linearizing F;„, and using (15), we have

where n = 1 and, in the present case, Fp t = —K r
is the Hooke's-law force arising from the static external
potential in (1). Fp;„, is the self-consistent Hartree force.
One guesses that, in a dynamic situation, a "force" of the

form of the left side of Eq. (15) equals the mass times
the convective acceleration. Then linearizing in the small

density perturbation Bn(r, t) and fluid velocity u one finds

BF(r, t) ——u'yV nP(r) t Bn = m
2 I p ]/3 Bll

3 Bt

where y = Fi2(2m) {(3vr2)2t3. In (16), the above motiva-

tion suggests the static value a' = u = 1. However, if
(16) is used, with the Poisson and continuity equations,
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Using (18), (11), and (7) and noting [x, V] = 0 we find

(16) is satisfied only if

2/~(n —n')x V V np(r) ) = 0. (19)

For inhomogeneous ground states considered here, x .

V[V(np(r) t )] is nonzero for at least some values of
r, so that (19) gives u' = n (frequency-independent
pressure coefficient). But we have just seen that a correct
description of the uniform gas requires u' = (9/5)u, so
the inhomogeneous theory violates either the HPT of the
uniform-gas limit. Hence, like the DLDA case studied

above, our hydrodynamics violates the HPT because of
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an explicit frequency dependence which was introduced
[11,15] in order to model the uniform electron gas
correctly.

A possible correction for this problem is as follows: In
HPT motion the relative motion of the particles is as in the
static equilibrium solution: thus the ~ = 0 coefficients
u and f„, are appropriate. In more general cases where
the potential is not harmonic, or for non-HPT motions
in a harmonic potential, one must separate out parts of
the motion which merely translate the system from those
which compress the system and/or rearrange the particle
motions; only the latter should be described by finite-~
coefficients.

To achieve this, we first solve the relevant static
equilibrium problem to obtain an inhomogeneous density
np(r). In an arbitrary perturbed state the linearized local
fiuid displacement x(r, t) is defined by

(20)

where tp is the initial equilibrium time (e.g., —~).
u(r, t) = J(r, t)/n(r, t) is the fiuid velocity. In what
follows we change to x(r, t) as the basic variable. Time
integration of the linearized continuity equation, with use
of (20), shows that the density is recovered from x by

Note that Bnt is zero for HPT motion, so that (25) reduces
to TDLDA which uses the zero-frequency xc coefficient
f„,(n, to = 0) = dp, „,/dn .Similarly Bn2 is zero for the
uniform gas, leading to a dynamic value of f„,. Thus
both these special cases are treated with the appropriate
response formula. Equations (24) and (25) are not limited
to these extreme cases, but they are merely suggestions
and will require further investigation.

In summary, we have derived exact results for a
harmonic external potential and used them to high-
light a problem with local density formalisms contain-
ing frequency-dependent coefficients. The problem arises
when one attempts to make the inhomogeneous ground-
state calculation consistent with the dynamic response,
while still preserving known results for the uniform-gas
and harmonic-confinement cases. A simple remedy has
been suggested for the difficulty, providing a basis for
further investigation.
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Bn (r, t) = —V [np (r) x (r, t)]
= 8 n~ (r, t) + Bn2 (r, t), (21)

where

Bn2(r, t) = —x(r, t) Vnp(r)

= np(r —x (r, t) ) —np (r), (22)

Bnt (r, t) = np(r) V —x(r, t)

= n (r, t) —np(r —x (r, t) ), (22)

where y is defined following Eq. (16). Similarly, the xc
potential of DLDF theory [II] becomes, in Fourier space,

b V„, (r, to) =f„,(np (r), co = 0)Bn2

+ f„,(np (r), to) 8nt (r, to) . (25)

The idea is that Bn2 represents changes due to sim-
ple displacement of the local equilibrium density. Thus,
for pressure terms in hydrodynamics or xc terms in the
DLDF theory, Bn2 is associated with static coefficients
[a = 1,f„,( =to0)] while Bn& is associated with dynamic
coefficients [a' = 9 /5f„, ( t)o]. Hence, in hydrodynam-
ics, the Euler equation (16) is replaced by

BF(r) ——yV np(r)
~

bnq + Bnt ~—2 (g3 ( 9
3 5 )
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