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Exact Solution of a Hubbard Chain with Bond-Charge Interaction
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We obtain the exact solution of a general Hubbard chain with kinetic energy t, bond-charge
interaction X, and on-site repulsion U with the only restriction t = X. At zero temperature and half
filling, the model exhibits a Mott transition at U = 4t. In the metallic phase and near half filling,
superconducting states are part of the degenerate ground state and are favored for small U if the system
is slightly perturbed.

PACS numbers: 71.27.+a, 71.30.+h, 74.20.—z, 75.10.Jm

The exact solutions, particularly those obtained using the
Bethe ansatz, have brought a very important progress in the
understanding of strongly correlated systems. However,
the conditions for integrability using the Bethe ansatz
are very restrictive, and only a limited class of realistic
models can be solved with this technique [1]. Because
of the importance of the exact solutions in clarifying the

effect of different physical ingredients and as a test of
approximations, the search for exact solutions has been
recently extended to other models and techniques, in spite
of the fact that in some cases the model or the parameters
are rather unrealistic [2—8].

The model we consider is a particular case of the
following Hamiltonian:

H= HU+H,

t= Ugn;tn;1 + cj c; [t»(1 —n; ) (1 —nj~) + tqs[n;~(1 —nj ) + (1 —n; )nj + tsBn;~n, ~].
(ij)cr

H has been derived as an effective one-band Hamilton-
ian for the description of cuprate superconductors [9].
Similar models including in some cases the nearest-
neighbor repulsion V have been studied by several
authors [4,5,8—13]. If t» + t» —2t» = 0, the three-

body term of H, vanishes, and H reduces to the model
considered by Hirsch and Marsiglio, in the framework
of their theory of "hole superconductivity" [10]. Fol-
lowing Ref. [8], we call the coefficients of the one- and
two-body parts of H, as t» = t and rz—&

—t» = X,
respectively. In the weak-coupling case 0 ( X « t, a
standard BCS-type mean-field approximation [10] and a
renormalization-group analysis in the one-dimensional

(1D) continuum-limit theory [13] show that a small

positive X gives rise to an effective attractive interaction
for a particle density n ) 1, while this interaction is

repulsive for n ( 1, and vanishes at half filling. This
situation cannot be extended to the case X = t, since for
these parameters (tzs = t&q + tsar = 0) H, is symmetric
under an electron-hole transformation and the physics
for densities n and 2 —n should be the same. Thus,
it is of interest to study this case. This is one of the

goals of this Letter. Strack and Vollhardt studied the
model for these parameters (including V) at half filling
and argued that this case corresponds to a physically
relevant range of parameters [8].

The study of the Mott transition also makes the case
t~~ = 0 appealing, because of the suppression of anti-

ferromagnetic correlations. This avoids the problem of

having to distinguish between a Mott insulator, in which
the particles become localized as a consequence of strong
on-site repulsion, and an antiferromagnetic insulator, in

which a weak interaction opens a gap in a nested Fermi
surface. The latter is the case of the Hubbard model
in bipartite lattices. Studies of the Mott transition in
these cases are restricted to the paramagnetic phase [14—
16]. Other studies have taken nonbipartite lattices [17]
or systems in which the noninteracting Fermi surface has
no nesting [18,19]. In the large U limit, the model of
Eq. (1) becomes equivalent to a generalized t Jmodel-
[20] with hopping t» (res) for n ( 1 (n ) 1), correlated

hopping tA&/U, and antiferromagnetic exchange interac-
tion J = 4t&s/U, which vanishes for t„I3 = 0.

In this Letter we obtain the exact solution of Hamil-
tonian (1) for a chain with open boundary conditions
under the only restriction t&s = ]t»I —(res) = 0. We
also discuss the effect of a finite t~~ on the basis of our
Lanczos results for finite chains. Strack and Vollhardt
obtained the exact ground state for t~~ = —t~~ = t, for
arbitrary dimension including the nearest-neighbor repul-
sion V, but only for n = l and two regimes of parame-
ters in which all particles are static in the ground state

[8]. Both regimes of parameters have been enlarged by
Ovchinikov [8]. In 1D and for V = 0 we are able to ob-
tain a11 eigenstates for arbitrary filling, particularly in a
third regime of parameters in which the dynamical part
of the Hamiltonian H, plays an important role in the

ground state.
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The exact solution of the model is greatly facilitated by
its symmetries. In any dimension for t» = 0, [H„HU] =
0 and the number of doubly occupied sites is conserved
[8]. Also, as in the case of the model of Essler, Korepin,
and Schoutens [5], for t» = 0, H, commutes not only
with the total spin, but also with the following generators
of another SU(2) algebra:

L

g CiJCi

'gz 2 CicrC; g (2)

where L is the number of sites. This allows us to
construct eigenstates of minimum energy which possess
off-diagonal long-range order for sufficiently small values
of U and ln —1 l.

The solution of the chain is obtained by mapping H,
into a tight-binding model of spinless fermions. To obtain
this mapping it is convenient to write H in a slave-
boson representation. We represent the four possible
states at site i: l0), c; l0), c;tc;~)0), by e; l0), f; 10), d; I0)
(pictorially 0, ) or t and ~), respectively, using two
bosons to represent the empty (0) and doubly occupied
(~) sites and two fermions (f and l) to describe the singly
occupied sites. The Hamiltonian takes the form

.t . tH=U d;d;+tqq f,~f;~e;e, —. tttt) f, f; d;d,
l (ij). (ij).

+ t»g f,~f;t(e;d, + e, d;) + H.c.
ij

with the constraints e; e; + d; d; + g f; f; = 1.
When t» =0, the numbers N =g;f; f;, N, =
g; e; e; and Nd = g; d; d; are separately conserved.
Note also that in a bipartite lattice, changing the phase
of the bosons e; or d; by —1 in one sublattice changes
the sign of t» or t», respectively. Thus we can choose
these signs arbitrarily. Taking —t» = t» = t ~ 0 as in
Ref. [8], H, takes the form

H, = t g fj~f; e;e, —+ d;dj + H.c. . (4)
(ij)o.

In a chain with open boundary conditions also, the order
of the bosons and that of the fermions along the chain are
separately conserved: H, permutes the order of a fermion
and a boson which are nearest neighbors, but two bosons
or two fermions cannot be permuted. For a given number
of fermions Nf = N~ + N~, let us numerate the L sites,
Nf fermions, and Nb = N, + Nd = L —Nf bosons with
similar sequence (for example, from left to right) using the
labels i, j, and m, respectively. Then, any state with a
definite number of particles on each site can be written as

Ng

lgt) = iB(m)e;( ) + [1 —B(m)]d;( )1
m=1

Ny

iF(J)f (,)( + [1 —F(j)]f;(,)tl l0). (5)
j=l

Here i(m) is the position of the mth boson in the sequence
[its inverse, defined on the set of sites for which nb; =
e; e; + b; b, = 1 is simply m(i) = gI, nb)], and i(j) has
a similar meaning for the fermions. B(m) = 1 if the mth
boson is an "empty" one and zero otherwise. Similarly in
terms of the spin of the fermions F(j) = 1/2 + S,'(,). The
products are ordered throughout with increasing labels to
the right. As an example, the state le) = 0 fl 00 ft)
~. . . and any other state lPt) such that (Ptl H, (ft) 4 0
have B(1) = B(2) = 1, B(3) = B(4) = 0, F(1) = F(3) =
F(4) = 1, and F(2) = F(5) = 0.

Because of the properties of Eq. (4) and the open
boundary conditions, the 1D model has an extremely rich
synunetry structure, including L SU(2) symmetries which
are the local versions of those previously mentioned.
There is one usual spin SU(2) algebra related to each
of the Nf fermions and a "local pairing" SU(2) algebra
related with each boson. As an example it can be easily
verified that (Hte;( )d;( )

—e;( )d;( )H, )l(/t() = 0, where

e;~ )d;~ ) is a raising operator. Thus one can separately
diagonalize H, in each subspace of definite values of
B(m) and F(j). For fixed Nf there are 2L subspaces, and
the size of each one is (N ). The raising and loweringNf
operators establish a one to one correspondence between
each state of one of these subspaces and the corresponding
one of another subspace, and H, takes the same form in
all these subspaces. In the subspace of the highest weight
of all SU(2) algebras [all B(m) = F(m) = 1], the solution
of H, for given Nf is easily obtained. The eigenstates
written in the original representation have the form

Nf i/2

lP ) = ck &l0), ckt =
l l g sin(ki)c;1,
),L+ 1J

(6)
where the possible values of k(L + 1)//n. are positive
integers. These eigenstates can be extended to any values
of B(m) and F(j ) using the lowering operators:

L (
l nfl [F(Z;) + [1 —F(j;)]c;Jc'1

i=1

+ (1 —nf;) iB(m;) + [1 —B(m;)]c;~c;~~ llew, ), (7)

where nf; = n;(2 —n;), n; = z c;~c;~, j; = z.L, nf;,
andm; =i —j;.

Equations (6) and (7) also describe all the eigenstates of
H = H, + HU. The latter term reduces the degeneracy to
2~f (~') and adds UNd to the energy.

For each particle density n, the ground state of H is
obtained by minimizing the energy with respect to the
density of doubly occupied sites d = Nd/L and taking
the lowest Nf values of k in Eq. (6), with the constraint
nL = 2dL + Nf. The result is very simple. In the
thermodynamic limit three regimes can be distinguished
depending on the values of U/t and the particle density
n (see Fig. 1). Also three regions of values of U/t can
be separated (for n = 1 and lU) ) 4t the ground state
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FIG. 1. Scheme for the ground state of the model as a
function of U/r and particle density. On the dashed line the
system is a Mott insulator.

was already obtained by Ovchinikov extending previous
results of Strack and Vollhardt [8]):

(a) U ) 4r. This region lies inside what we call regime
I: for n ~ 1 the physics is the same as that of a spinless
model. The ground state expectation value (Hu) = 0 and

2t
d = 0, e(n) = ——sin(nm),

where e(n) is the energy density. For n ~ 1, from
electron-hole symmetry d = n —1, e(n) = U(n —1) +
e(2 —n) For n. = 1, (H, ) = (Hz} = 0 and the system is
an insulator with energy gap U —4t.

(b) U & 4t. This —region coincides with regime
III. Here (for an even number of particles) all particles
are paired, all pairs are static ((H, ) = 0), and

d = n/2, e(n) = Un/2. (9)

(c) 4t ~ U ~ 4—t In this reg. ion there are two critical
densities n~ and n2 defined by n; = (I/m. ) arccos( —U/4t)
and n] ~1 ~n2=2 —n~. For n~n~ or n~n2 the
physics corresponds to regime I and the ground state, and
its energy was described above. Instead, for nj ( n ( n2

the system is inside regime II. This regime is the only
one in which empty, single, and double occupancy at any
site is possible, and the competition between H, and H~ is
apparent in the ground state. The double occupancy and

energy are given by
n —n~

d =
2

e(n) = Ud—

(1o)
In regimes II and III the system is at the borderline of

phase separation and also of superconductivity. Eigen-
states with off-diagonal long-range order (ODLRO) are
part of the degenerate ground state. To show this, let
us take an eigenstate [Pg} of the form of Eq. (7), with

Nd doubly occupied sites, which belongs to the ground
state. The state ~p} = gN'~re} with r1 given by Eq. (2)
is clearly different from zero [it is obtained from ~Pg}

putting all B(m) = 1 in Eq. (7)] and is also an eigen-
state of H, with the same eigenvalue as that of ~pg). Also

~p} is a highest-weight state of the 71-pairing SU(2) alge-
bra [Eq. (2)]. Similarly the state ~P~, }= (rjt)N'~t(} is an
eigenstate of H, with the same eigenvalue, and an eigen-
state of H with the same energy as the original state [Pg}.
In Ref. [5], it is shown that ~P~, } in the thermodynamic
limit (L ~ with d = Nd/I. constant) has ODLRO if
d 4 0 and 1 + d —n = N, /L W 0.

The model has a metal-insulator transition at U, = 4t.
The four-boson theory of Kotliar and Ruckenstein [15]
in the mean-field approximation gives U, = 16r/m [9] in

good agreement with the exact value. The approximation
also gives a reasonably accurate U, for the infinite-
dimensional Hubbard model [16].

The form of the Hamiltonian in the representation of
Eq. (3) suggests that addition of a small r„z, such that
it can be treated in second-order perturbation theory,
introduces antiferromagnetic correlations between
nearest-neighbor fermions and allows the permutation
of nearest-neighbor bosons d and e, increasing their
mobility and favoring superconductivity. We have solved
numerically the model for tqq = ~4~~ = 1, 4q = 0.2,
and L = 10. In the case tA& = —1, for 1/2 & n ~ 1, the
model exhibits phase separation for U & U, with U, —l

for n —3/4 and U, = 0 for n = 1, while for U & U, the
system behaves as a Tomonaga —Luttinger liquid (TLL)
[21]. For n ( 1/2 the TLL behavior is observed for all
values of U. Within the TLL regime, the evaluation of
the compressibility, the Drude weight, and the spin and
charge velocities allowed us to derive the correlation
exponent K~ [21]. The resulting values indicate that the
dominant correlations are the superconducting ones for
1/2 & n & 1 and the charge-charge ones for n ~ 1/2.
In the case t&& = t» = l, there is no phase separation.
For 1/2 & n & 3/2 and small values of U, the system
is a TLL with dominant superconducting correlations.
For n = 1 there is a transition to an insulating phase for
U —3.5.

In this Letter we have solved exactly a Hubbard chain
including bond-charge repulsion for a particular value of
the latter. The model displays a Mott transition at half
filling, and in two regimes of parameters the ground state
contains superconducting states. Numerical results show
that superconductivity is favored by a small perturbation
for not too large on-site Coulomb repulsion.
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