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Kinetic Roughness of Amorphous Multilayers Studied by Diffuse X-Ray Scattering
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(Received 28 December 1993)

We apply the scattering geometry of grazing incidence and exit angles to study the diffuse scattering
of an amorphous, magnetron sputtered W/Si multilayer. Only this technique allows for the full range
of parallel momentum transfer necessary to determine the height-height self- and cross-correlation
functions from the structure factor of the rough interfaces and the exit-angle-resolved intensity,
respectively. The self-correlation functions show the logarithmic scaling behavior predicted by the
Edwards-Wilkinson Langevin equation, which describes the kinetic roughening of a growing surface.
The cross-correlation functions also agree with those derived from the equation.

PACS numbers: 68.55.—a, 05.40.+j, 61.10.—i

Interface roughness, which inevitably occurs during the
nonequilibrium growth of thin layers and layered struc-
tures, is currently a topic of intense scientific activity. The
surface roughness of a single layer may contain informa-
tion on the mechanism of growth, its dimensionality and

scaling behavior, as shown, for example, by the x-ray re-

flectivity measurements of Au on Si [I].
However, from such specular reflectivity measurements

only the average rms roughness can be deduced, whereas
lateral interface structures are accessible by measuring the
diffuse intensity in nonspecular directions. Let the sample
surface be parametrized by a continuous height function

h(x, y) and let the plane of reflection be the xz plane. If
Q denotes the scattering vector, the specular condition
is then given by Q„=Qy

= 0, Q. ) 0, and the diffuse
scattering is measured with a parallel momentum trans-

fer Qll
= (Qt + Qt. Recently, partially se)f-afftne sur-

face structures with isotropic height-height self-correlation
functions of the form

C(r):= h r hr' + r ') = e esp) —lr/f) ")

have been reported [2—3], where tr is the rms roughness, h

is the static or spatial roughening exponent, and g is an up-

per cutoff. This function can be deduced from the structure
factor of a rough surface S„„sh(Q),which has been calcu-
lated within the distorted-wave Born approximation [4].

In a heterostructure with periodically repeating inter-

faces between two chemically different materials as in a
synthetic multilayer, additional correlations across differ-
ent interfaces must be expected, the so-called height-height
cross-correlations (h;(r')h, (r' + r)) [5]. If one succeeds
in determining these cross-correlations experimentally, ac-
cess not only to the spatial but also to the temporal aspects
of the growth process is obtained, as different interfaces
can be attributed to different times t during growth. Under
the assumption that the interface structure does not relax
after growth, one can thus in principle deduce both scal-

ing exponents that characterize the statistical properties of
a growing self-affine surface [6]. However, if the two ma-

terials of the heterostructure do not grow symmetrically,

separate growth parameters have to be introduced for each
type of layer by the same parameters.

We will show that for the W/Si multilayer studied here,
both the measured self- and the cross-correlations can be
understood, if the growth is modeled by the Edwards-
Wilkinson Langevin equation [7]

dh(r, t) = vugh(r", t) + yI(r, t), C.
~)

c)E

where v is a coefficient describing how effective the
local curvature is in smoothing out the interface profile„
while the uncorrelated white shot noise g describes the
stochastic nature of the deposition process. The analytical
solution of this equation in 2 + 1 dimensions gives a
logarithmic self-correlation function and a "diffusionlike"
temporal spread of fluctuations.

Equation (2) was originally proposed to describe a some-
what oversimplified growth model that is hardly expected
to be applicable to real systems. However, since then it

has been shown in a renormalization approach that any
model, assuming the growth velocity along the interface
normal to be a function of only the local derivatives of
h(r, t), obeys the more general Kardar-Parisi-Zhang equa-
tion [8]. In some special cases and in early stages of
growth, Monte Carlo simulations have shown that the solu-

tion of this equation can be approximated by its linearized
version Eq. (2) and shows the corresponding scaling expo-
nents before a crossover to the full nonlinear behavior [9].

Multilayers with a nanometer periodicity d in the growth
direction are currently developed for various applications
that mostly rely crucially on the roughness of the interfaces
and on the roughness correlations between them. Recently
we have shown that the diffuse scattering of an amorphous
W/C multilayer around the specular condition at small

angles is concentrated in sheets of nonvanishing intensity
in reciprocal space at Q. = n27r/d [10]. These so-called
diffuse "Bragg sheets" are modulated by standing wave

effects whenever the angle of incidence or exit is equal
to a Bragg angle, 2d sinu = nA. In the present work,
however, these dynamical effects can be neglected, as
the data have been recorded at u;, n&- ~y o.&,ag~, and a
kinematical approach is thus sufficient.
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FIG. 1. The scattering geometry at grazing incidence and exit
angles rr;, uf, shown in (a) real and in (b) reciprocal space.

We demonstrate in this Letter that the limitations and

disadvantages of the conventional diffuse x-ray scattering
techniques as described above can be overcome by a
scattering geometry normally used for grazing-incidence
large angle diffraction (GID), as shown in Fig. 1(a). Here
the incident beam strikes the sample surface under an angle
o, ; and is reflected under the angle uf = n;. The scattered
x rays are recorded by a position sensitive detector (PSD),
which can be set to measure specular or diffuse scattering
along Q„bychoosing a particular u; and uf. As shown

in Fig. 1(b), we placed the PSD on the first diffuse

Bragg sheet, Q, = 2n. /d. Keeping u; and uf constant
and rotating the detector by 28 around the normal of
the sample surface, we can set Qii to any desired value,
without the restriction from which experiments in the
plane of reflection suffer. In addition, since Q, is kept
always the same, the diffuse intensity does not have to
be deconvoluted for the tedious transmission functions
("Yoneda wings") or corrections for effective sample size
at small u; and uf.

We used two modes of recording the diffuse scatter-
ing intensity close to the forward direction; see Fig. 1(b):
First, we measure the decay of the integrated intensity

over the PSD as a function of Qii. From these data,
the self-correlation function averaged over the top 60 in-

terfaces. This is possible, if the intensity is integrated
over a range hQ, = 2m. /d, so that the coherent and inco-
herent contributions to the diffuse scattering are equally
sampled. In the second mode, the spatial resolution of
the PSD along Q, was exploited to monitor directly the
width of the Bragg sheet as a function of Qii. From the

Q, breadth in these scans, the number of interfaces N
which contribute coherently to the diffuse scattering is de-
termined as a function of the lateral length scale r of the
interface fluctuations. This scattering geometry allows for
measurements in a large range of Qii, which is crucial for
the determination of the correct correlation function.

For large Qii, this scattering geometry also allows us to
investigate the amorphous structure factor Sb„it,(Q) of the

multilayer at exactly the same scattering depth in which
the diffuse scattering of the rough interfaces is measured.
We have shown recently how to separate quantitatively
the contributions to diffuse scattering resulting from rough
interfaces or from amorphous bulk, using their distinctive

Q dependences [11].
The experiment was performed at the wiggler beamline

Wl of the storage ring Doris III at the HASYLAB/DESY
in Hamburg using a wavelength A = 1.44 k The impor-
tant beam collimations both in and out of the plane of
reflection were set to An; = 1, Auf = 0.1, and 328 =
2 mrad. The PSD has a sensitive length of 45 mrn and
covered a range of b, uf = 2.7' at a distance of 959 mm
behind the sample. As a sample we chose an amorphous
W/Si multilayer grown by a computer controlled mag-
netron sputtering machine, using a well polished silicon
wafer as a substrate. The multilayer stack consisted of 150
bilayers of periodicity d = 22.8 k The individual W and

Si layer thicknesses were dw = 10.8 and ds; ——12.0 A, re-
spectively. An average interface rms roughness of cr =
3 A. had been determined from reflectivity measurements
using Cu K t radiation. The first Bragg sheet of this mul-

tilayer is expected to occur at Q, = 2n/d = 0.276.A '.
In order to place the center of the PSD on the first diffuse

Bragg sheet, we chose u; = 0.98' = 3.15u„a,being the
critical angle for total reflection at the wavelength used.
Since this incidence angle u; is smaller than the first Bragg
angle ut tt„as = 1.8', uf has to be centered on 2.64' to
meet the condition Q, = 2m. /d. The corresponding scat-
tering depth A which is a function of u; and uf [12]is then
basically absorption controlled. If A is converted to the
number of interfaces N,

„
that can be investigated, N,

„

is about 60. This will become important for the evalu-
ation of the width of the Bragg sheets.

Figure 2 shows the Q, -integrated intensity of the first
Bragg sheet as a function of parallel momentum transfer
on a log-log scale. In order to extract the self-correlation
function, we need to specify the "window" in Qii, where
the measured intensity is dominated by scattering from in-
terface roughness. Towards low Qii this window is limited

by the divergence of the primary (and hence the specular)
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FIG. 2. The decay of the intensity with Qi in the first diffuse
Bragg sheet. In the region dominated by scattering from
rough interfaces, the fits obtained with the different correlation
functions are shown.

beam; towards high Qii it sees the amorphous scattering
that is observed in the high angle region 26t ) 13' as an
essentially incoherent superposition of the W and Si amor-

phous structure factors. In between these limits a compar-
ison of the data with the theoretical predictions made in
the framework of the distorted-wave Born approximation
[4] can be made. All interfaces are assumed to have the
same spatial roughness exponent h. The cross-correlations
of the interfaces have not been taken into account, as the
integration along Q, averages over coherently and incoher-
ently scattered intensity [5]. The structure factor was cal-
culated numerically for the correlation function of Eq. (1)
for values of h = 0.1 and h = 0.3. At Qii )& I/g, only the

asymptotic behavior C(r) ~ r~" of the correlation function
is probed, independent of the cutoff length g and the spe-
cial form of the function chosen. Therefore the scattering
intensity decays by a power of v with Qii. The exponent
v is a function of h and of (Q, o)2 When .the width of the

Bragg sheet b, Q, is large, the exponent v may differ for the

two ends of the PSD, and the Q, -resolved data have to be
taken into account. However, this effect is negligible in

our case. A detailed paper on the methological aspects
of nonspecular scattering in grazing incidence dirac
tion geometry and on the data analysis is in preparation.
Equation (1) is obviously inconsistent with the data. If,
however, a logarithmic roughness characterized by a cor-
relation function of the type C(r) = A —B Inr is assumed,
where A and 8 are constants, the predicted exponent is
v = —2 + (Q, o.) /2 [see Eq. (2.38) of Ref. [4]], which
is in excellent agreement with our data.

Let us now turn to the af-resolved data, i.e., the
intensity distribution along the channels of the PSD for a
given value of 28. Within the small angle approximation
sina; = u;, the PSD channel number is proportional to

Q, . In the plane of reIIection at 28 = 0, the full width

at half maximum (FWHM) of the first Bragg sheet is
2.1 X 10 3 A '. Increasing 28 we observe, along with

the strong intensity decay discussed above, a broadening
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of the Bragg sheet, i.e., an increase of its FWHM, until
the modulations along Q, finally vanish for 28 ~ 3'. To
indicate the overall behavior, PSD spectra measured in the
range 0.1 ~ 28 ~ 1 have been combined in the 3D plot
of Fig. 3, showing the intensity as a function of Q, and

Qii. The number of coherently interfering layers N(r),
defined as the number of interfaces over which the height-
height cross-correlation on a given lateral length scale r is
damped to 1/e of its original amplitude, is now calculated
from the "thickness" of the sheets

N 2N d4
Q g i

—ingd/2i2 ~ ( K / )
(3)

sin'(Q, d/4)
'

The values of N are plotted against the corresponding
lateral length scale r = 2n. /Qii in Fig. 4. The saturation
of N(r) at a value of about 57 interfaces for r ~
500 A is simply due to the fact that absorption limits
the number of interfaces probed. The width and the
form of the Bragg sheet were studied with and without

[Eq. (3)] an attenuation term describing the absorption
effect. However, no significant difference in N(r) was
found for r ~ 300 A, so that Eq. (3) can be used for a
quantitative analysis in this range.

In order to understand the strong increase of N(r) in

the range not affected by absorption, we consider a long
wavelength fluctuation in a certain interface developed
due to the random nature of the growth process. It is
intuitively sensible that this fluctuation will be replicated
better across subsequent layers than a small pertubation
of a few atomic distances, and we thus ex ct it not to
be damped out within a layer of d = 20 . To obtain
a quantitative understanding of this phenomenon, we
interpret our data along the lines of a multilayer scattering
theory by Stearns [13]. In this approach, the frequency
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FIG. 3. The intensity distribution of the Bragg sheet as a
function of Q, and Qt. The peaks of nine different PSD
curves recorded at 28 = 0.1,0.2', . . . , 1' have been combined,
with logarithmic scaling of the peak heights. The increase in
the FWHM with Qii indicates the decay of height-height cross-
correlations for the shorter wavelength components.
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However, as vw and vs; enter symmetrically in Eq. (7),
it is not possible to decide which of the two interface
types is the rough one and which is the smooth one.
This problem could be solved in a future investigation
from the comparison of single Si and W layers grown
under the same conditions or from transmission electron
micrographs of the multilayer sample. For the present
work, it seems more appropriate to define an average
parameter that describes the growth after coarse graining
over the individual Si and W layers. In this case, Eq. (7)
is replaced by

100
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FIG. 4. The number of correlated interfaces with N as a
function of the lateral length scale r For. r ~ 500 A absorption
limits, shown is the maximum number of interfaces that add
up coherently. In the range 50 A ~ r ~ 300 A, the theory of
Stearns [13,14] is used to fit the data, as shown in the inset.

spectrum of the ith interface w; (f) consists of an intrinsic
roughness h;( f), induced by the growth of that particular
layer itself, and of a replication term a;(f) that describes
the coupling to the roughness of the underlying layer,

w;I =h;I +a;fw;&I). (4)

The intrinsic frequency spectrum is the Fourier transform
of a single layer height h(r, t) of average thickness t
grown on a perfectly Hat substrate,

h; f = — h(r, t)exp 2n f r dr.
A

So far, the model is still quite general. One can now
make the specific assumption that the replication factor
is diffusionlike in agreement with the solution of Eq. (2),
e.g., given by

(5)

a; f = exp[ 4n. vd f ], —

where v; and d; are the relaxation parameter and the
thicknesses of the W and Si layers, respectively.

It has further been shown [14] that, with the assumption
of Eq. (4) and Eq. (6), the number N(r) of correlated
interfaces is given by

N(r) = 2

In([1 + (2m) dwvw/r ] [1 + (2n.) st st/r ])
'

(7)

where dw and ds; are the layer thicknesses of the two
components. We now use this formula to make a least
squares fit to the data for r ~ 300 A, i.e., in the region not
limited by absorption (see the inset of Fig. 4). The best
fit was obtained for parameters vs; = 0.28 ~ 0.04 A and
vw = 0 ~ 0.04 A. This result indicates the two interfaces
W/Si and Si/W are not symmetrically rough and that
one component is efficient in smoothing out Auctuations,
while the other does not contribute to the smoothening.

N(r) = 2

ln[(1 + 2m) dv/r2]

and the fit in Fig. 4 gives a value of v = 0.13 +. 0.02 A
that now describes the average relaxation parameter of
one bilayer.

To conclude, we have measured the height-height self-
and cross-correlations in an amorphous W/Si multilayer.
In contrast to conventional methods used for this task,
we chose the scattering geometry typically used for large
angle diffraction at grazing incidence and exit angles,
allowing for a maximum range of parallel momentum
transfer. The results have been interpreted along the
lines of kinetic roughening theory. Temporal aspects of
roughening are accessible from the multilayer sample,
as different interfaces correspond to different times of
growth. Good agreement of the data with the predictions
of the Edwards-Wilkinson equation (2) was found both
for the height-height self and cross-c-orrelation functions.
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