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Radial Structure of High-Mode-Number Toroidal Modes in General Equilibrium Profiles
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The problem of global radial envelope structure of high-mode-number toroidal modes in general
equilibrium profiles is studied using the coordinate transformation formalism. It is shown that there
exists a continuum of toroidal eigenmodes with well-localized radial structure.
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It is now well recognized that in toroidal plasma sys-
tems toroidal modes with ballooning structure can be
generated from the coupling of cylindrical modes. The
well-known ballooning representation formalism (BRF)
[1] has served as a powerful tool to analyze the stability
of these toroidal modes in the high-mode-number regime.
This formalism assumes initially a particular eigenfunc-
tion form, called the "ballooning representation. " To
the lowest order of 1/n, where n is the toroidal mode
number, complicated two-dimensional (2D) eigenvalue
problems then reduce to simple one-dimensional (1D)
problems, which can be easily solved. A number of
works have used this lowest order ballooning analysis
to estimate the stability of various high-n toroidal insta-
bilities in axisymmetric toroidal plasma systems. An im-

portant problem of the lowest order ballooning analysis
is, however, that the lowest order solutions are not lo-
calized radially but just propagate. To see whether they
localize radially well, we should consider the next or-
der equations. This problem, known as the next order
radial envelope profile (REP) problem, has been pre-
viously considered near a maximum in the equilibrium
quantities like the diamagnetic frequency cu. , showing
that there can exist a toroidal mode (more specifically,
the mode with Ho = 0 among the lowest order solutions
over 0 & Ho ( 2m, where Ho is the Bloch shift parame-
ter) with well-localized radial structure in this case [1].
However, in the more general case, for example, at the

plasma radius with a linear equilibrium variation which
actually covers most of plasma region, it is still not clear
whether a similarly localized mode can exist or not, even
though numerous previous works performed the lowest
order stability estimates, assuming implicitly the exis-
tence of such a mode (at 80 = 0).

In this Letter, we consider this problem of the global
radial structure of high-n toroidal modes in the more
general case. For this study, we employ a new formalism,
the coordinate transformation formalism (CTF), similar
to the "twisted slice or eddy" model [2,3] instead of the
usual BRF. While the BRF is physically insightful, it has
soiTie complication and difficulty in treating the next order
REP problem, mainly due to the usage of the assumed
eigenfunction form. The present CTF does not use this
assumption but solves the 2D eigenvalue equation almost

straightforwardly. This enables us to handle more clearly
and easily the next order REP problem.

We show that in the more general equilibrium profile
case there also exist toroidal eigenmodes with well-
localized radial structure. These new modes which can
now arise over most of the plasma region differ from the
conventional mode arising near the maximum equilibrium
point, in that they exist as a continuum and have the
asymmetric shapes poloidally and radially. However,
they have the similar magnitudes of radial scale length and
maximum growth rate with the conventional mode, and
thus implying that numerous previous works, estimated
the stability of toroidal modes in general equilibrium
profiles assuming the existence of the conventional type
mode, might be almost acceptable. How these new
continuum modes are related to the mode, found recently
in Ref. [4] from the BRF, is also discussed.

We start our study from the general form of a 2D
eigenvalue equation in the usual (r, 8) coordinate system:

L, ~, r, e, V, , V~( y = 0.

where V& = 8/err +. (1/r)d/BOB and V~~
= b V = (1/

Rq) (8/88 + q8/dg) Follo.wing the standard procedure,
we solve this equation order by order in terms of the
parameter 6 = 1/n « 1. Assuming the eigenmode is
centered at the rational surface r = ro, where nq(ro) =
m, writing the perturbed function @ in the form

P(r, 8) = $(r, 9)e '"~ "'~' and then expanding all

equilibrium quantities around ro, like nq(r) = nq(ro) +
sk, , x + nq"(ro)x /2. . . , where x =— r —ro, s = roq'(ro)/

q(ro), and k,. —= m/ro, we can obtain first the lowest order
equation

Lo ~o. H. ~ Is~,, & o ~ HBx' BH

We note that to the lowest order the radial variation comes
through only the magnetic shear term sk,,x. We will

first solve this lowest order 2D equation (2) using the
CTF (the subscripts "0" are dropped for a moment). A

clear mathematical definition of usual ballooning space
variables and ballooning equations will be obtained during

this solving process, and also it will be clarified why the

next order REP problem occurs.
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Lowest order solution by the CTF.—The essential part
of the CTF is just to take the coordinate transformation

H'=H, k„'=k —sk H, (3)
where k is the Fourier transform of x..

$(x, H) = dk„e' "4(k„,H).
1

277 —CD

It is easy to see that the lowest order 2D equation (2) then
reduces to the following 1D form:

(
LI e», 8, 8o —8, —l@(8) = 0, (5)'

BH)

(4)

with taking Hn
—= —k„'/sk» as a good quantum number.

We first note that the reduced 1D equation (5) is exactly
the same form as the usual ballooning equation. This
means that the ballooning equation can be also derived
by a coordinate transformation, as also noted in Refs. [2]
and [3], instead of using the ballooning representation.
A novel advantage of the above simple derivation is
that it enables us obtain the following two mathematical
pictures: (i) the Bloch shift parameter Hn can be seen as
a coordinate in the coordinate system where the lowest
order 2D equation reduces to the 1D form; and (ii) the
ballooning equation can be seen as a differential equation
along the characteristic line Hn = k„'/sk» =—8 —k, /sk»
in the (k„,H) space. As will be shown, these two pictures
become very useful in understanding how the present CTF
is related to the conventional BRF and also why the next
order REP problem occurs.

To complete the lowest order problem, we need further
to specify proper boundary conditions to solve the reduced
1D equation (5). Obviously, any physical solution in the
2D (k„,H) space should satisfy the two general boundary
conditions: (a) 4(k„,H) 0 as ~k„~ ~ and (b) the
periodicity along H. Here, it is easy to see, noting the
above picture (ii), that the first condition (a) can be
satisfied well if we require ill

~e~ (8) = 0 for Eq. (5). We
note that the variable H has thus changed its meaning from
a usual poloidal angle to the extended ballooning angle
(—~ ( 8 ( ~). On the other hand, to satisfy the second
condition (b), we use the periodic property of eigenvalue
~(Hp) = ni(Hp + 22rl), i = +1, +2, . . . , WhiCh iS ObViOuS

from Eq. (5) where Hn dependence comes only in the
form of (Hn

—8). This property implies the existence
of infinite numbers of shifted functions ilute, +2 i(8) =
@e,(8 —22rl), with the same eigenvalue. If we now
make the following function:

~'e. (8) = g ~'e.+2 i(8) = g 4'e, (8 —2vrl), (6)
I=—ac I=—oc

we can see that 4q, then becomes periodic along H. Thus,
we find that the two general boundary conditions (a) and
(b) can be satisfied well, if we solve Eq. (5) with the
condition 4~e~ (8) = 0 and then take the infinite sum
(6). Basically, this solving procedure is similar with that
in the usual BRF, but note that we obtained here the
results without assuming any eigenfunction form.

Next order REP problem. —The above lowest order
solution (6), satisfying the two boundary conditions (a)
and (b), looks complete by itself. One problem is,
however, found if we now try to draw the eigenfunction
shape in the 2D (k„,8) space, i.e., we see that the above
lowest order solution determines the eigenfunction shape,
only along the characteristic line 80 = 8 —k„/sk» =
const in the 2D (k„H) space. Clearly, in drawing
a complete 2D profile this is insufficient. We need
further to know the eigenfunction shape along the other
characteristic line or along Hp, and this is the basic reason
why we should consider the next order equations.

Before we try to determine the shape along Hp from
the next order equations, it is interesting to see first
what shape along Hp is physically desirable. Let us
first assume the shape along Hp by the 8 function
B(80 —Hii) or B(k„—sk»(lp + 22rl 8)). With this
assumption, the mode will have a highly localized pro-
file around the Hp = Op along Hp, with the eigenvalue
ni(00). The eigenfunction form in the (k„H) space
then becomes @o,(k„, H) = g", „4o,(8 —22rl)B(k
sk»(00 + 2ml —8)) from Eq. (6), and taking the inverse
Fourier transform of this we can obtain

y(x 8) g @ (8 22ri)&iskvx(e 2nl —80) —
(7)

I=—oo

[We note that the solution (7) is exactly the same form
as the well-known ballooning representation. From the
present CTF approach, we thus obtain the ballooning
representation as an approximate solution of the lowest
order equation, under the 8-function assumption. ] It is
easily observed that the solution (7) does not converge
radially but just propagates. This means that the 8-
function shape along Hp corresponds to an unphysical
solution with infinite radial width. To obtain a more
physical solution, let us now assume the other shape
e ' "0) /' with e 0, instead of the 8 function. We
can see that the solution (7) then becomes proportional to
e " so that the solution converges radially. Thus, we
find that the solution, with a highly localized but broader
shape than the 6 function along Hp, is desirable from the
next order equation for the well-localized global radial
structure.

The next order equations can be basically obtained
from Eq. (1), by taking the next order terms. First,
for the first order term we note that there exist several
sources to contribute: (u) the equilibrium variation in
T,(r), T, (r), q(r), etc. ; (p) the variation of radial vari-
able r itself from ro', and (y) the poloidal differential
operator 8/88 in terms of P. The terms x/Lr„x/ro,
and (1/m)B/88, which come from the above sources (a),
(P), (y), respectively, where LT = (d ln T,/dr)—
change to i B(ro/SLr, )8/88p, i B(1/s)8/880, alld
ii'»a/880 (note 8/BH 8/88)e, + 8/880 —8/a80 since
8/88p » 8/BH [e, —1 with the expected highly localized
shape along Hp), under the coordinate transformation (3).
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where Co = I dH(Iio ((1Lo/Hco)C H and C( =
I „dH'&o, L(@o..

We first note that the envelope (11) can have a
well-localized profile along Ho with the self-consistent
localization width 58o —8 'i, if (I) cu( = 0 and

(II) Im[ (Co/C()B—coo/(18o] ) 0. Here, the second condi-
tion (II) can be written in a more precise form,

Co ~~o Co 9 ~o2

Im —— Im
C( BHo (3C( (18o )

(12)

All these terms can have the same magnitude of order
BH/HHo (-8( 2 as will be shown) in the typical case of
rp —LT and s —1. This illustrates the important fact
that the first order term will be finite in general from the
sources (P) and (y), even when there is no equilibrium
variation, unlike the usual assumption from the BRF
[1]. We can thus expect that the shape along Ho or the
REP will be determined in general from the first order
equation, and from now on we consider this first order
REP problem.

Including the above first order terms, the 2D eigenvalue
equation (1) can be written in a form, in the (8, Ho) space,

Lol ~, 8, Ho,
—

I
+ i 6L( cu, 8, Ho, —I'

BH) H& ~Ho

(8)

Here, the first term represents the lowest order operator
which, as already shown, determines the lowest order
eigenvalue coo(Ho) and eigenfunction C(z, at each Ho.

The second term, proportional to () j()Ho, is the first
order contributions from the above sources (u), (P), and

(y). This term couples the lowest order solutions along
Hp, determining the profile along Hp. From the earlier
discussion, we expect a highly localized profile along
Hp around Hp = Op from this coupling and assume a
priori ()/()Ho —ii ' 2 —n' )) 1. The second term in

Eq. (8) then becomes order 6'i2, and we can expand
to 4 = 4o + 8(i2(Ii( and cu = cryo(8o) + 8' cu(. Now,
assuming the lowest order eigenfunction 4p has the form
(Iio = A(Ho)48, with the envelope function A(Ho) and,

expanding the Lp and 4g, around Hp = Op, we can obtain
the following first order equation:

l

a'"~ — ' 8'
l

'A(8')eo

+ iBL(, (I~p, + (i Lo+( = 0, (9)
HA(Ho)

BHp

where Hp
=—Hp

—Op. Multiplying 40, and averaging
over H, this then yields the envelope equation

i 2 9~p ~l BA
Col 8' a)( —

Ho lA + i BC(, = 0, (10)
~Ho BHp

of which the solution is

A(Ho) = exp ——8' cu(8' —— (8'), (l l)

if we require the second derivative term, in the ex-
pansion coo(Ho) = coo(Oo) + ((lcuo/(18o)Ho + (1/2) ((1 coo/

&Ho) (Ho) + . , to be negligible to the order 6(i-", com-
pared with the first derivative term in Eq. (11).

The condition (12) is the main result of this work. It
defines an acceptable range in the Hp values for the lowest
order solution to have a well-defined radial structure in the
finite first order case of C( —1. [In contrast, in the limit
of C, —0 Eq. (10) gives just cu( = 0 and (lcuo jc38o = 0,
so that we should consider the second order equation to
determine the envelope. This is exactly the conventional
case considered in the previous work [1].] For example,
in the limit where Cp and C& are dominantly real, the
condition (12) is just related to the lowest order growth
rate y'o(Ho). For the typical case witli yo(Ho) cosHo, tile
condition (12) then gives the range sinHo ~

l cosHol/3 or
0.32 ~ Ho ~ ~ —0.32. As far as Ho is within this range,
the zeroth order eigenvalue is correct to the order 6'"-
from the condition (I), and the eigenfunctions have the
well-localized radial structure with AHp —6'/2 or Ax-
p, 6 'i2 —(p, ro)'i In ot. her words, this result means
that in a general equilibrium profile there can exist a
continuum of high-n toroidal modes with well-localized
radial structure. The maximum growth rate (- 0.9 at

Ho = 0.32 for the above example) of the continuum is
a little smaller than the usual lowest order estimate (1
at Ho = 0) based on the conventional mode. Also, the
continuum modes have asymmetric shapes poloidally and

radially, since Hp 4 0.
Besides the above general case, for the comparison with

previous works [4,5] it is interesting to consider a simple
case where the operators Lo and L] have the particular
forms

d
Lo = Loo H, Ho, —+ Lo(ar), L( = L((cu, Ho). (13)

BH

Note that in Lp the eigenvalue part is well separated while

L( has no 8 dependence. In this particular case, Eq. (8)
can be solved quite simply. %e need just to assume the

eigenfunction has the form (Ii = A(Ho)(Ii((, with Lo@q, =
0. Then Eq. (8) becomes

[Lo((cu) —Lo((coo)]A(Ho) e(„

dA B4g,+ iBL((cu, Ho) 4g„+ A
' = 0. (14)

Ho
"

~Ho

which is just the equation of A(Ho) only (note the last
term AH(Iiz„/BHo can be neglected by the highly localized
envelope assumption), giving the solution

A(8 )= (15)

where f (cu, Ho) = [Lo(cu) Lo(~o(Ho))]/L((~. Ho)

We first note that the envelope (15) can have a
well-localized profile around Ho = Oo with cu = coo(Oo),

m(gf/HHo) —llm(g2f'/3gHo)l at Ho = eo
exactly the same condition as Eq. (12).
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On the other hand, let us try to impose the condition
2'

f(co, Hp)dHp = 2mn,
p

n = 0, ~1, ~2, . . . , (16)

which makes A(Hp) periodic along Hp. If we use the earlier
picture (ii) of the ballooning equation, we can see that the
eigenfunction 4(H, Hp) = A(Hp)4g (H, Hp) then becomes
periodic along 8 by itself in the (k„, 8) space, without the
necessity to make the infinite series (6). This solution,
which seems to have a different form from the typical
solution (7), is indeed that found recently in Ref. [4] from
the usual BRF. From the present CTF approach we can
obtain a more clear understanding of this solution, and
here we add some important comments.

We first note that this solution would be essentially
the same type as the conventional mode with the infinite
series form. This is because with 8 « 1 the envelope
(15) is highly peaked at the maximum amplitude points
Hp = Op + 2n. l with the localization width of order Bti2,

where l = 0, ~1, . . . [the maximum amplitude point Op
can be obtained by the conditions Imf(cu, Hp) = 0 and

BImf/88p ) 0, with cu determined from Eq. (16)], and
then taking only these parts near the maximum points to
the order 8'/ the solution has the infinite series form.
Furthermore, since the localization width is AHp —8 /,
the solution has the radial width Ax —p, Bti~ —(p, rp)'i2,
which is also similar with the conventional mode. With
these observations, we can now say that the above
solution is nothing but one within the continuum given
in Eq. (12). In fact, considering the simple case with

Lp = cu, Lt = 1, and yp(Hp) = cos Hp, the condition (16)
gives y = 0 with 0'p = m/2, which clearly belongs to
just one among the continuum (12) which has 0.9 (
y ( —0.9 with 0.32 ~ Op + 7r —0.32. The condition
(16), which is obtained in Ref. [4] using the usual WKB
argument, permits only one solution because the condition
(16), indeed, requires the well behavior of the envelope
A(Hp) to the arbitrary order in 8 over all of the region
0 ( Hp ( 2m. If we, however, relax this requirement to
the order 6'/ consistent with the first order treatment, we
can obtain the more flexible condition (12) allowing more
solutions and a larger maximum growth rate.

A more physical understanding of how the continuum
modes can exist in the general equilibrium profile case
may be obtained by considering the eigenfunction shape.
For the case near the maximum, the global equilibrium
variation is symmetric around the maximum point, and
the mode which can incorporate well this symmetric
equilibrium variation should be the mode, which is

symmetric to the lowest order, and thus, only the mode
with Hp = 0 [1]. In contrast, for the more general
case (like the linearly varying equilibrium profile) where
the equilibrium variation is asymmetric, there exists a
continuum of modes (0 ( Hp ( m ), which are asymmetric
to the lowest order and thus can incorporate well the
asymmetric equilibrium variation. We can thus expect
the more solutions (12) in this case.

The result of this work, showing the existence of a con-
tinuum of high-n toroidal modes in general equilibrium
profile, implies that the toroidal modes, like the toroidal

g; or the ballooning modes, might be actually playing
important roles in real plasma systems. It also suggests
that numerous previous works, estimated the stability of
various high-n toroidal modes based on the conventional
mode picture, might be almost acceptable.
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