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High-Dimensional Chaotic Dynamics of an External Cavity Semiconductor Laser
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We report experimental realization of high-dimensional chaos in a semiconductor laser with delayed
feedback from a T-shaped cavity. We study the transition phenomena from regular to high-dimensional
chaotic behavior and analyze the time series quantitatively. Correlation dimensions up to C- = 7

are determined reliably from experimental data by a combination of a singular value analysis and

a Grassberger-Procaccia algorithm. Modeling the dynamical behavior using semiclassical delay rate
equations provides a basic understanding of the observed delay-induced instabilities.

PACS numbers: 42.50.Ne, 05.45.+b, 42.55.Px, 42.65.Pc

During the last 15 years the investigation of nonlinear
dynamics in optical systems has proven to be extremely
fruitful for the understanding of nonlinear systems in gen-
eral. Many experimental systems and theoretical models
in optics have been of fundamental importance for the
achievements in this area. In the past, the main interest
has been the investigation and understanding of systems
with only a few degrees of freedom ((3). In particu-
lar, much progress has been made concerning possible bi-
furcations and phenomena at the transition from regular
behavior to low-dimensional chaos. Investigations of
high-dimensional chaos, on the other hand, have been
mainly limited to numerical simulations; experiments
have always had the problem of reliable and quantitative
data analysis. Consequently, there has been a lack of con-
figurations up to now that allow well-defined access to all,
experiment, data analysis, and modeling.

A laser system with many interacting degrees of free-
dom can conveniently be realized by time-delayed feed-
back. The nonlinear dynamical behavior of a system with
time-delayed feedback was first investigated theoretically
by Ikeda et al. in the late 1970's [1,2] modeling a passive
nonlinear ring resonator, externally pumped by a laser.
Their investigations based on numerical modeling were
later generalized to a simple delay equation applicable to
a whole class of delay systems [3]. The Ikeda scenario
turned out to be a paradigm for the dynamical behavior
of delayed feedback systems. Two interesting phenom-
ena predicted by the Ikeda scenario are a period doubling
route to chaos and multistability. In experiments on
passive systems, these phenomena related with low-
dimensional dynamics have been verified [4,5]. Simula-
tions also showed the occurrence of attractor fusion and
high-dimensional chaos proving the high dimensionality
of delayed feedback systems [3].

We have designed a setup with which a whole class of
delay scenarios can be realized by simple modifications
of its configuration. In particular, we have studied
experimentally the infIuence of coherent optical feedback
from a Michelson interferometerlike T-shaped cavity on
the intensity dynamics of a semiconductor laser. This
allowed us for the first time to realize experimentally and

to characterize reliably high-dimensional temporal chaos.
We observe the coexistence of various different attractors,
chaotic itinerancy among the unstable attractor ruins,
and high-dimensional chaos. To corroborate the high
dimensionality of the dynamical behavior, we combined
a singular value analysis (SVA) with a usual modified
Grassberger-Procaccia analysis for the determination of
correlation dimensions. Moreover. by providing phase
information numerical integration of model equations
gives additional insight into the basic physical mechanism
involved in the instabilities.

Our experimental setup is depicted in Fig. 1(a). We
have employed a dc-driven GaAs/GaAIAs bulk semicon-
ductor laser (Hitachi HLP1400). The facet facing the ex-
ternal cavity is antirellection (AR) coated with a residual
reAectivity of R„—10 4 in order to get a better coupling
to the cavity and to avoid the coherence collapse. The
injection current was held below the threshold of the soli-
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FIG. l. (a) Experimental setup: Semiconductor laser (LD)
coupled to a T—shaped external cavity. Periodic time series:
(b) fundamental state with characteristic rectangular modula-
tion; (c) third harmonic state.

2188 0031-9007/94/73(16)/2188(4)$06. 00 : 1994 The American Physical Society



VOLUME 73, NUMBER 16 PHYSICAL REVIEW LETTERS 17 OcToBER 1994

tary laser diode. The T—shaped cavity consists of the
uncoated facet of the laser diode (LD) and two external
high reflecting gold mirrors (R = 98%). A beam split-
ter divides the light intensity equally to the two cav-
ity arms with the external mirrors. The lengths of the
two arms are varied in the range 30 cm ~ Ii 2 ~ 1.5 m
corresponding to round trip frequencies of 500 MHz )
I/Ti 2

= c/2 li 2 ~ 100 MHz.
The emission of the laser is detected and analyzed in

the following manner. The time-integrated output power
of the semiconductor laser is measured with a slow Si pin
photodiode. The fast intensity fluctuations are detected
by a fast Si avalanche photodiode. Its electrical output
signal is amplified and then analyzed in the time and fre-
quency domain using a fast digital oscilloscope (band-
width 1 6Hz) and a rf-spectrum analyzer. In addition,
the optical spectrum can be measured with low resolu-
tion by an optical spectrum analyzer (b, A = 0.1 nm) and
with high resolution by a plane Fabry-Perot interferometer
(Av = 100 MHz) [6].

We have designed this special cavity configuration
in order to realize a class of systems, which show
delay induced instabilities, that can be chosen by simple
modifications of the configuration. In this Letter we will
concentrate on the investigation of the T-resonator system
with one of the delay times (T&) being twice as long as the
other one (T2). As we will demonstrate in the following,
an Ikeda-scenario —related behavior is observed in this
case. Although the Ikeda scenario has originally been
derived for passive single delayed feedback systems, our
experiment shows a close relation to the Ikeda scenario
with respect to the occurring dynamical states. In this
context the additional delayed feedback with T] is to be
regarded simply as a means for increasing the nonlinearity
of the feedback function of T2.

General features of the Ikeda scenario can be summa-
rized as follows. Depending on the feedback strength
p„multistability of different states occurs, whose modu-
lation period is given roughly by T„=2r/(2n + 1), n =
0, 1,2, . . . . For n = 0 the modulation is squarelike, and in
the following called the fundamental state. With respect
to their modulation frequency, the other states are called
third harmonic state, fifth harmonic state, etc. For increas-
ing p, each of the periodic states evolves on an individual
branch to chaotic states, and finally a global chaotic at-
tractor occurs by fusion of all individual chaotic attrac-
tors. The transition to chaos occurs on the fundamental
branch via a period doubling cascade, and on the higher
harmonic branches via splitting in coexisting isomer
states, which are characterized by different peak modu-
lation patterns superimposed on the original oscillations.
They can be periodic as well as chaotic.

In addition to Ikeda s findings, we find switching be-
tween various states despite fixed experimental parame-
ters. The lifetimes of the states which can be fixed
points, periodic as well as chaotic states, range from ms
up to some seconds. The fixed point corresponds to a

time independent constant light intensity. The periodic
states can be categorized into different groups according
to their dominant frequency in the power spectrum and
related to the different branches in the Ikeda scenario.
One group is defined by states with a dominant modu-
lation frequency, which is nearly half of the compound
cavity frequency, where the cavity frequency is given by
the smallest common multiple of the individual round trip
frequencies. Drawing an analogy to the Ikeda scenario,
this modulation frequency is labeled as the fundamental
frequency and the corresponding state as the fundamental
state. The laser output of this state shows the characteris-
tic rectangular modulation. The other groups of periodic
states exhibit odd harmonics of the fundamental frequency
as the dominant modulation frequencies. In our experi-
ment, the seventh harmonic has been the highest state
to be observed. The different groups include states with
constant amplitude, as well as isomer states, characterized
by different superimposed amplitude modulations. Two
examples of periodic time series are shown in Figs. 1(b)
and 1(c). The time series in Fig. 1(b) depicts an inten-

sity modulation with the fundamental frequency; Fig. 1(c)
shows one with the third harmonic. Each of these
different groups can transform into individual chaotic
states, and finally the global chaotic attractor can be
observed.

In the regime of attractor fusion we have observed
chaotic itinerancy —the phenomenon that a dynamical
system switches among different unstable local chaotic
orbits on a time scale, long compared to the dynamics
on each attractor ruin. This effect, as it has been
found in different computer models describing multimode
lasers [7], coupled laser systems [8,9], coupled nonlinear
oscillators [10,11],and neural networks [12], seems to be
a general phenomenon in systems with many interacting
degrees of freedom. A related effect has been found in
a spatially extended Ikeda-like model [13]. Application
of chaotic itinerancy as a method for adaptive search
has been proposed by Davis for a passive optical system
[14]. To our knowledge experimental verification has
only been realized in a transverse multimode cavity with
a photorefractive crystal [15].

One example of the experimental time series that veri-
fies the switching among local chaotic attractor ruins is
depicted in Fig. 2(a). It shows a transition from the
local chaotic attractor ruin of the fundamental to the ruin
of a third harmonic state. The transition itself is quite
fast, taking place on a time scale comparable to only
a few oscillation periods. The time which the system
spends on a single attractor ruin varies in between 10 and
1000 periods. The depicted time series corresponds to
the state at the final attractor fusion which leads to the
global chaotic attractor. A time series attributed to the
global chaotic attractor is shown in Fig. 2(b). Different
regions can be distinguished which can be associated with
the former local attractors. Regions with a modulation
corresponding to the fundamental, the third, and the fifth
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FIG. 2. Chaotic time series: (a) transition in time series
showing chaotic itinerancy among chaotic fundamental and
third harmonic states; (b) dynamics on the global chaotic
attractor.

harmonic frequency are particularly designated in the
figure.

To characterize the chaotic time series and to ver-
ify our interpretation, we have performed correlation di-
mension calculations. They prove that the time series
have dimensions which are distinctively larger than 3.
The usual Grassberger-Procaccia analysis (GPA) [16]per-
formed on the delay-embedded phase space requires a
huge amount of data of high precision to achieve di-
mensions larger than 3. Our time series were experi-
mentally restricted to 32768 points. The noise level is
estimated to be around 1%. This demands an improved
method to reliably calculate higher dimensions. We ex-
panded the usual GPA by applying a singular value de-
composition [17] on the time series and reconstructing
the phase space by a multichannel delay embedding of
the principal components thus obtained [18,19]. This
method has the advantage that both noise reduction as
well as much better embedding of the phase space can
be achieved, allowing the calculation of higher correla-
tion dimensions. Clear scaling regions can be achieved
yielding dimensions up to C2 —7 from experimental data
[20]. In Fig. 3 results of the data analysis are shown,
applied to two states on the fundamental branch. The
diagrams show the slope of the correlation sum versus
the radii of the spheres used for the counting in the
GPA. Figure 3(a) shows the analysis of a low-dimensional
chaotic state with chaotic period 4 according to the in-
verse period doubling cascade. A clear scaling region
can be recognized between ln(r) = —2.2 and ln(r) =
—1.4, yielding a dimension Cz ——1.9. Figure 3(b) de-
picts the result of our analysis applied to a higher-
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l"IG. 3. Correlation dimension analysis. Slope of correlation
sum versus radii obtained by the method described in the
text: (a) low-dimensional local chaotic attractor; (b) high-
dimensional local chaotic attractor.

dimensional local chaotic attractor with chaotic period 1

which is quite close to the attractor fusion. From the
diagram one obtains the dimension C2 = 7. The analy-
sis of the global chaotic attractor, however, no longer
yields any clear scaling region, due to its even higher di-
mensionality. To check our analysis versus colored noise,
we have performed the same analysis with surrogate time
series [21]. In contrast to the original time series, no scal-
ing regions can be seen in the case of the surrogates. But
even for the global chaotic attractor, the analysis shows
significantly different results for original and surrogate
time series, an indication for the deterministic nature of
the dynamical phenomena.

To give further evidence that the behavior of our system
is determined by the delayed feedback, we have performed
numerical modeling. It is based on the phenomenological
rate equations for the optical field 0 and the inversion
W of the semiconductor laser with time-delayed feedback
as introduced by Lang and Kobayashi [22]. We have
modified these equations by adding a second coherent
feedback term to account for the second cavity arm:

e(t) = i~(N(t)) + -[G(N(t)) —I j e(t)
I

2
+ ~ Z(t —Tl) + x . Z(t —T2),

N (t) = I —ytN (t) —G(N(t)) . (0 (t) (2,

where G(N) = I' + G~(N —N„) is the linearized gain
function, cu(N) = coo —nG~(N —N„)/2 the lasing
frequency, n = —2coz/Gtt the linewidth enhancement
factor, N„ the threshold inversion, I the inverse photon
lifetime, pic the inverse electron lifetime, and J the

pumping. Typical parameter values for this laser type
have been used in the calculations [19]. On the basis of
this model we can reproduce the experimental behavior
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qualitatively. In addition, this numerical modeling allows
us to get insight into the phase dynamics, which remains
concealed in the experiment. This provides a deeper
understanding of the physical mechanism, as illustrated
in Fig. 4, where two examples of time series obtained by
these simulations are shown. Note the striking similarity
to the experimental time series shown in Fig. 1. In
Fig. 4(a) the fundamental state is depicted. The different
curves show the time dependence of the laser intensity
I and 4& and 42, defined by the difference between the
phase of the respective delayed optical field and the field
inside the laser. The time dependence of the intensity
is sensitively dependent on the delay phase differences
4& of the longer cavity arm and 42 of the shorter cavity
arm. As can be seen in the figure, 42 shows a strong
modulation in the range —m. ~ 42 ~ 0. The other delay
phase difference is only marginally modulated around

4~ —0. The modulation of 42 is transformed to an
amplitude modulation, due to the delayed feedback. An
additional coupling of amplitude and phase of the laser
field is mediated by the u parameter. Shortly before
each phase change there is a small overshoot to the
respective opposite direction. This can be attributed to
the pass of the phase over the maximum of the resonance
curve of the compound cavity, which shifts with the laser
intensity. The combination of these effects leads to the
characteristic rectangular modulation. In Fig. 4(b) the
third harmonic state is depicted. As can be seen from
the plot of 4~ and 42, the same mechanism applies as for
the fundamental state. Furthermore, in the fifth harmonic
state, period doubling, isomers, and chaotic states can be
reproduced by the calculations. Thus, experiment and
modeling confirm and complement each other with respect
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FIG. 4. Calculated time series of laser intensity and delay
phases: (a) fundamental state with characteristic rectangular
modulation; (b) third harmonic state.

to characterization and understanding of the dynamical
behavior.

In conclusion, we have studied the transition from
regular to high-dimensional chaos in a delayed feedback
semiconductor laser system showing attractor merging
and chaotic itinerancy. Various dynamical states are
identified and quantitatively characterized by correlation
dimensions up to C2 —7. Numerical modeling based on
delay rate equations shows that the delay phases govern
the observed instability. Presenting for the first time an

experimental system which allows thorough analysis of
the transition from regular behavior to high-dimensional
chaos, we propose our model system as an ideal candidate
for studying the dynamics in nonlinear systems with many
degrees of freedom.
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