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General Relativistic Gravitational Field of a Rigidly Rotating Disk of Dust:
Axis Potential, Disk Metric, and Surface Mass Density
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In a recent paper we described the general relativistic gravitational field of a rigidly rotating disk
of dust in terms of two linear integral equations (a "small" one and a "big" one). Here we present
the exact solution to the small integral equation. The Ernst potential on the symmetry axis, the disk
metric, as well as the surface mass density are given up to quadratures in terms of the p function of the
Weierstrass.

PACS numbers: 04.20.Jb, 04.40.—b, 95.30.Sf

Recently the solution describing the general relativistic
gravitational field of the rigidly rotating disk of dust has
been found [1] by solving a boundary value problem,
first formulated and attacked by Bardeen and Wagoner
[2,3]. This solution is a global one, i.e., it represents the
"exterior" as well as the "interior" field. Apart from its
astrophysical importance the model might be a first step
toward the exact solution of rotating body problems in

general relativity. A remarkable feature of the exterior
solution is the fact that, in a certain parameter limit, it
approaches exactly the extreme Kerr solution.

Our solution was derived by applying the inverse
(scattering) method. As a consequence, the metric has
to be calculated from the solution of a linear integral
equation (the "big" integral equation). The kernel of that
equation may be found from the boundary conditions.
This task leads us to another linear integral equation, the
"small" one [see Eq. (13) below]. Its analytic solution is
given in the present Letter. This allows us to calculate
explicitly the Ernst potential on the symmetry axis, the
disk metric, as well as the surface mass density. The
details of the derivation of both integral equations and
the related solution techniques will be described in a
subsequent paper.

The solution of the problem may be formulated in

Weyl-Lewis-Papapetrou coordinates:

ds = e [e "(dp + ds ) + p dp']
—e"(dt + adq)'. (1)

(Throughout the paper we use units where Newton's
gravitational constant G as well as the velocity of light c
are equal to 1.) The metric functions e (p, P), e "(p, P),
and a(p, g) depend uniquely on two parameters, fl and

p, . 0 is the angular velocity of the disk as seen by an
observer at infinity. The parameter p, introduced in [1] is
related to the "surface potential" Vo =—U(p = 0, g = 0)
and the coordinate radius po of the disk:

@=20 pe (2)

[Note that Vo also determines the relative central redshift

zo = exp( —Vo) —1 of the disk measured by an observer
at infinity. ]

It turns out that Vo is a function of p, alone; Vo =
Vo(~). All the results of the present paper may be
expressed in terms of that function Vo(p, ).

The parameter function Vo(p, l.—As a consequence of
the small integral equation, the dependence of Vo on p, is

given by the following expression:

sinh2VO = —p— 1 + p

ted[I(t )'-t -' —4 -t (1 + —")1—-p

where
1 " ln(x + v'1 + x~)dx

l(p, )
=-

o vt(1 + x2)(p, —x)

and p is the Weierstrass function defined by

(4)

(I:g'. g.') $4t g2t g3
l5)

(8)

The symmetry of our problem implies

f(p. —
&) = f(p. 4)

where the bar denotes complex conjugation.

The parameter range 0 ) Vo ) —~. with
~ Vo~ &( 1 being

the Newtonian limit, corresponds to

0 & lL, & p, o = 4.6296618434743420426. .. , (6)

where p, o is the first zero of @[1(p,};—,p, —4, —,p, (1 +
"9 )] —

=, lL. The limit p, p, o leads, for p'- + s'2 4 0,
to the extreme Kerr solution (see Ref. [1]). The physical
meaning of the solution for p & p, o is under investigation.

Note that from Vo(p, ) one obtains po(A, p, ) according to
(2). In the next paragraphs we will show that, in a sense,
the whole solution of the problem may be displayed from

Vo(tt)
The Ernst potential on the symmetry axis The (com. —-

plex) Ernst potential is defined by
/' = e"' + i b. - (7)

where b(p, g) is related to the metric function a(p, g)
according to
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For our solution [1]the Ernst potential on the symmetry axis p = 0 is given by

f(p = 0.C ) 0) =

where u(x) algebraically depends on P(x) and x:

P (x)dx
2m +

) ix —g/po
u(x)dx

2m + ~ Ex g/po

(10)

with

() —w)p + i/4w'e ' (be + 40'pex') —(e' ~ + w')p'
a(x) =

1bp 20 ppx

w = 2A p()(1 —x ),

and P has to satisfy the small integral equation:

~4V0 4Q 2p (12)

P(x) = (2p, ) e 'x(1 —x ) —p (1 —x ) P(x) +
772 i /I g ] XII /I (13)

where g denotes Cauchy's principal value. Here we fo(P, ) is defined by the replacement p, P, in the
present the exact solution: complex parameter function

with

and

—2(sinh2VO + C)
sin g,1+ C2

C = p, (1 —x') = we 'v'

(14)

(15)

fo(p) = e'"'"' + ibo(p), (2o)

(21)

representing the Ernst potential at p = 0, g = 0+

[cf. Eq. (12)]. The imaginary part of the Ernst potential
in the disk depends on p, (1 —p2/po) only, i.e.,

b = bo(tu[l p /po])

g(x) = 2x/g () + C')

e' = exp(2Vo(@[1 —p'/po)))—
2pp

(17)

(1 + Qa)e = exp[Vo(p))exp(Vo(p[1 —p /po])),

and

e" 'U = exp{—2Vo(p, ))

fo(t )fo(I )

p(& p Ipo) fo(p') + fo()u)

Again, Vo(p, [1 —p /po]) means that the argument p, in

Vo(p, ) must be replaced by p, (1 —p2/po). In Eq. (19)

'
Vo()u, )Q—[sinh 2Vo()u, ) + P,]X

o sinh2Vo(p, ) + C

p, = C + p,x y . (16)
The notation Vo()u, ) indicates that the argument p, in the
parameter function Vo(p) defined by Eq. (3) has to be
replaced by P, = C + )u, x2y2. Vo(tj, ) tneans dVo(P, )/dP, .

Disk metric and surface mass density The me. t—ric
functions in the disk (i.e., for f = 0, p ~ po) are given
by the following expressions:

Finally, the surface mass density o. defined by

o. = (I/2m. )Vtit=o,

e =e [(1+Qa) —0 p e ]
is given by

bo(p [1 —p'/pol)
exp[Vo(t )] e p(Vo(@[1 —p'/po']))

(22)

[Note that bo(p, ) ( 0 for p, ( po .] In Fig. 1 we have
plotted the radial variation of the proper surface mass
density o.p = o. exp(U —k) for several values of )M, .

It should be noted that our exact results confirm the
high accuracy of the approximate results obtained by
Bardeen and Wagoner [3].

In conclusion, so far we have presented, in elementary
functions and quadratures, the metric along the boundary
of the space, i.e., on the axis of symmetry, in the
disk, and at infinity. Although those data completely
determine the interior solution, i.e., the mass density,
the four-velocity and the gravitational field in the source
(in the disk), and the multipole structure of the exterior
solution, a more explicit representation of the vacuum
region outside the axis would be desirable. The road
there leads across a detailed analysis of the (linear) big
integral equation, which is a standard reformulation of
the Riemann-Hilbert problem solving our boundary value
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Radial distribution of the proper surface mass density

For small values of p one recognizes t e
f th Maclaurin diskNewtonian profile ~ (1 —p /paj o e

Note that po 0 as g go

f. [1] E . (27)]. There is a justified hope
to make progress in that direction: It turns ou a
the solution procedure to the big integral equation is

related to an unusual Backlund transform ation of the Ernst
equation.

ot rove useful,Even if this correspondence should not prove use u,
the big integral equation has a numbember of advantages
to be emphasize: i isp

'
d: ~ ~ It a linear task which can be

discretized without any difficu y. ilt . (ii The coordinates
enter the equation as parameters so y,- lel such that the
Ernst potential can oca y1 I lI ' be calculated with arbitrary
accuracy.

le for aThe ri idl rotating dust disk is a first examp eT erigi yro
le b means ofnontrivia o1 boundary value problem solvab e y

for a lobalthe inverse (scattering) method and likewise or a g o
solution describing a rotating isolated body.

The procedure might be applicable to more complicated
rotating sources, e.g. , ot differentially rotating disks, to
disks surroun e y rinnded b rings (disconnected configurations),
to a black hole surrounded by a disk, and to the exterior
fields of rotating fluid balls.
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