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Avalanches and 1/f Noise in Evolution and Growth Models
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We formally establish the relationship between spatial fractal behavior and long-range temporal
correlations for a broad range of self-organized {and not self-organized) critical phenomena including
directed percolation, interface depinning, and a simple evolution model. The recurrent activity at
any particular site forms a fractal in time, with a power spectrum S(f}—1/f" The . exponent
d = (D —d)/z, where d is the spatial dimension, D is the avalanche dimension, and z is the usual

dynamical exponent. Theoretical results agree with numerical simulations.

PACS numbers: 05.40.+j, 47.55.Mh, 64.60.Ak, 68.35.Fx

One of the most intriguing observations of natural phe-
nomena is the widespread occurrence of both fractal scal-
ing behavior [1]and I/f type noise [2,3]. "Self-organized
criticality" (SOC) [4] has been proposed as an explanation
for these ubiquitous behaviors. In this picture, both are
thought to be consequences of a dynamical process which
drives large extended systems to an attractor that is poised
at criticality. Thus far, though, this intuitively appealing
connection has not been formally established. Existing
evidence is primarily numerical [5].

Here, we demonstrate that fractal spatial and temporal
behavior are intrinsically related for a broad range of
critical phenomena including interface depinning [6] and

growth [7], directed percolation (DP) [8], and the Bak-
Sneppen (BS) evolution model [9]. By studying the
time correlations in the local activity, we show that the
temporal and spatial activity can be described as different
cuts in the same underlying fractal. This fractal exhibits
spatiotemporal complexity [10]. New scaling relations
are derived, and many previously measured exponents are
explained. Our most important results are as follows.

For all models considered, the activity at any particular
site is recurrent in time; it is a "fractal renewal process"
[11]. The scaling behavior of recurrent activity in time
can be described by the fractal dimension d of the
return points on the one-dimensional time axis. This
leads to an exponent 7.f;„,= d + 1 for the first return

times, or lifetimes, and to a I/fd power spectrum,
where 0 ~ d ~ 1. The exponent d can be related to
the dimension D of the avalanches through the relation
d = (D —d)/z, where d is the spatial dimension and z

is the usual dynamical exponent. We have performed
numerical simulations to measure the recurrent activity
for DP and the BS model. The results agree with our
predictions based on known values of D and z of DP [12]
and the BS model [13]. Our predicted exponents agree
with measurements in one [14] and two [15] dimension
for Sneppen's model of interface depinning [6]. For
"parallel" interface models, where all unstable sites move
at each time step [16,17], the exponent d is identical
to the usual exponent P = y/z [7] characterizing the
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temporal development of the ensemble averaged width
»- = ((h —(h)) ) —t Pg(t/L') Measu. ring the lifetime
exponents or power spectrum thus provides a new, /oca1
method to measure P.

Consider a one-dimensional time line for the activity
at any particular site. The distribution of "hole" sizes, or
intervals, separating subsequent return points of activity
is given by the first return probability Pt;„,, (t), where t is
the size of the hole. This distribution is normalizable;

IPt;„,,(t)dt = 1. The average total number of return

points, n(T), in an interval of length T is given by the
fractal dimension of return points; i.e., n(T) —T" It can.
be related to the first return probability;

T

n(T) = T —n(T) Pt;„,(t)t dt, (1)

where Pt.;„,(t) —t "'"' for t » 1.If rt,„,~ 2 then the

divergence at the upper limit must cancel the T term, so
that T —n(T)T2 "-'. This leads to the scaling relation

which connects the fractal dimension of return points to
the distribution of hole sizes. The quantity P, ~~(r, t) is
the probability that activity at position 0 at time 0 will

be at r at time t. This quantity does not obey the same
normalization condition as Pt;„,. Instead IP,»(r, t)dr =
N, where N is the average number of active sites. Since
n(T) is simply the sum of all returns of activity to a
particular site up to time T,

n(t + I) —n(t) = P, (1(0.t),
where P, ~&(0, 1) —t "" for t&&1. Equating these two
expressions for n(T) gives

&first + &a I]

which relates the "lifetime" exponents for the first and all

returns of activity. Thus, the lifetime exponents are both
determined by d. Since P,»(0, t) is the autocorrelation
function, the power spectrum is simply [18]

P„ii{0,t)e ""1'dt = =. -



VOLUME 73, NUMBER 16 PHYSICAL REVIEW LETTERS 17 OCTOBER 1994

For each model we consider, d is derived by the
studying geometry of avalanches. This establishes a
formal connection between 1/f noise and fractal scaling
behavior, i.e., spatiotemporal complexity, in these models.
Model dependent behavior occurs between the upper
critical and lower critical dimension. In the mean field
limit, or above the upper critical dimension, the activity
is barely able to return and 7.z;„,= r, &~

= 1. As a result,
the power spectrum, S(f) —1/fo, corresponds to white
noise. On the other hand, at the lower critical dimension,
the activity becomes dense in time and d 1. In this
case, the power spectrum S(f) —1/f, with logarithmic
corrections.

As the first example, we consider DP. In DP, a
preferred direction, labeled by t, is chosen and bonds are
oriented with respect to t. Percolation is only allowed
in the direction of increasing t. Each bond exists with

probability p. When p = p„the DP cluster can become
infinitely large. Let us consider a large, finite cluster on
a (d + 1)-dimensional lattice. A part of such a cluster
is shown in Fig. 1 for d = 1. This cluster is asymmetric
with respect to the t direction. Self-similarity requires
that the time extent T scales with the spatial extent in

any one of the d directions perpendicular to time, R,
as T —R' where z is the usual dynamical exponent
relating space and time. The total size of the cluster
S scales with the spatial extent as S —R, where D is
the avalanche dimension. In order to compute D, usually
the cluster is partitioned into R' equal time slices. Each
such slice has n„t—R"f parts of the cluster. Using this

1000 .—,—

method of partitioning the cluster leads to R —R'R"f,
and the avalanche dimension D = z + d~. We can also
consider the cluster to be a composition of R~ one-
dimensional fractals in time, each with n(T) active sites
[19]. Consequently,

R —R"R', d = (D —d)/z, (6)

and the power spectrum for DP, S(f) —f {'
The lifetime exponents for DP are rr;„,= 2 —(d-
dt)/z and r, ~&

——(d —dI)/z. We simulated bond DP
on a square lattice in 1 + 1 dimensions at p = 0.6445
for L = 3000. The data shown in Fig. 2, 7.f' t —1.86
and ~, ~~

——0.14, are in agreement with the theoretical
prediction ~q;„,——1.84 and ~, ~~

= 0.16 based on the
exponents D and z in Ref. [12]. Also S(f) —1/f o s4 in

1 + I dimensions.
We now consider the BS model of evolution [9], which

is defined as follows: random numbers f; are assigned
independently to sites on a d-dimensional lattice. They
are chosen from a uniform distribution between zero and
one, P(f). At each step, the site with the lowest random
number f;„is chosen. Then that site and its 2d nearest
neighbors are assigned new random numbers which are
also drawn from 9'. After many updates have occurred,
the system reaches a statistically stationary state in which
the density of random numbers in the system with f & f,
vanishes and is uniform above f, . The activity pattern in
the BS model, shown in Fig. 3, is a fractal in both space
and time. In the steady state, the distribution of distances
between sites of subsequent activity obeys a power law;
i.e., P(r) —r where m = 1 + D(2 —r) [20]. Here,
the exponent r describes the distribution of avalanche
sizes, and D is the avalanche dimension. Since the BS
model is sequential, and only one site is active at each
time step, the time T is the same as the size S. As a
result, the exponent z in Eq. (6) should be replaced with
D. The lifetime exponents for the BS model are

d = 1 —d/D, rr;„,= 2 —d/D, r, ~~
= d/D. (7)
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FIG. 1. Part of large directed percolation cluster in d = l.
The horizontal axis is a row of lattice sites and the vertical
axis is parallel time. Note the appearance of holes of all sizes
between returns to a given site.
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FIG. 2. Distribution of first return times (0) and all return
times (Q) for directed percolation in d = l. The measured
exponents 7f;„,and r, l& are 1.86 and 0.14, respectively.
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The power spectrum for the BS model is

S(f) f (1 —djo)

It has been shown by Paczuski, Maslov, and Bak [13]
that the BS model in the transient state approaching its
SOC attractor can be mapped to an exactly equivalent
BS branching process for p ( p, away from the criti-
cal point. In addition, it was argued that the critical ex-
ponents for the BS model at the critical point, i.e., 0
and ~, are the same as DP. Given increased computa-
tional efficiency, we simulated the BS branching process
directly, instead of the BS model. Inserting the values
for DP [12,21] into Eq. (7) for the BS model gives (d =
1) t(1~~I = 1 57, r I10= 0 43; (d = 2) rt;qII = 1 32,
0.68. These values are in agreement with values from our
simulations of the BS branching process. In d = 1 we
simulated the process at branching probability p = 0.667
and averaged over =10 mutations to obtain Fig. 4. Our
measured values are 7.~;„,——1.58 and ~„.]] = 0.42, quite
close to the predicted values. Similar results were found
for d = 2, at branching probability p = 0.390, ~~-;„,——

1.28 and 7.,]] ——0.70. As seen in the figure, the value of
v-q;„., for d = 2 is still increasing at the largest return times
measured, so the true value of 7&;„„is likely to be larger.
The predicted power spectrum is S(f) —I/f057 in d = 1

and S(f) —I/f in d = 2.
We now consider a simple lattice model that describes

self-organized critical interface depinning, which was in-
troduced by Sneppen [6]. An interface of size L" de-
fined on a discrete lattice (x, h) moves under the influence
of random pinning forces f(x, h) assigned independently

from 2'. Initially, h(x) = 0. Growth occurs by advanc-
ing the site on the interface with the smallest random pin-
ning force by one step. Then a constraint is imposed for
all nearest neighbor gradients, ~h(x} —h(x')i ~ 1. This is
met by advancing the heights of neighboring sites. This
process is repeated indefinitely. When the total number
of minimal sites chosen s —L, a system wide avalanche
has pushed the interface to a critical depinned state. In the
critical state, the width of the interface grows with sys-
tern size as ~~

—L~, where y is the roughness exponent.
Consequently, the average volume of sites separating the
critica1 interface configuration from the initial configura-
tion scales as L"+~, and

D=d+,y.
as derived in Ref. [22]. If one covers the system wide
avalanche with N„1(S)—Sd~~ time columns, the average
number of returns n (S) —S" obeys S —N,-,1 (S)n (S).
Thus, Eq. (7) is valid for the Sneppen model with D =—

d + g. The results for the Sneppen model are

d
2 S(f) f I old

d+y' d+,y

~9)
As Tang and Leschhorn showed [23,24] by mapping the

one-dimensional problem to "rotated" DP the roughness
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FIG. 3. Cluster of activity in the d = 1 Bak-Sneppen evolu-
tion model. The horizontal axis is a row of lattice sites and the
vertical axis is sequential time. Note the appearance of holes
of all sizes between returns to a given site.
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FIG. 4. Distribution of first return times (0) and all return
times (Q) for the Bak-Sneppen evolution model. (a) d = 1;
(b)d= . Ind= 1, I-„„„=1S7,andI. ,~,

——043. Ind=2,
7.f„.,

= 1.26, and Tall
——0.43.
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exponent g = 0.63 in d = 1. Simulations give g = 0.5
in d = 2 [15]. Using these values for g in Eq. (9) we ob-
tain ~a» = 0-61 and ~first = 1.39 in d = 1 tobe compared
with ~,» = 0.62 +. .04, 7.f;„,= 1.35 +. 0.1 measured by
Sneppen and Jensen [14]. In d = 2, we predict r, li = 0.8
and 7.f;„,= 1.2 compared with the measured values r, » ——

0.8 ~ 0.01 and rt;„,——1.2 ~ 0.1 [15]. The power spec-
trum from Eq. (9) is S(f) —f 039 in d = I and S(f)—
f 0.20 in d = 2, based on the measured value of g.

Our results also apply to a similar model for depinning
[16,17] that does not exhibit SOC. Instead of advancing
the site with the lowest random pinning force, all unstable
sites with f ( F are advanced in parallel. Then the

system is relaxed to meet the gradient constraint. For F
slightly below f, the interface relaxes by large avalanches
each time F is incremented until the interface gets stuck
again at this new higher value of F. Because of the
parallel rules of dynamics, the time T differs from the size
S, and the dynamical exponent z must be included as an
independent exponent. Substituting Eq. (8) into (6) gives
d = g/z for the parallel model. This is just the usual
exponent P that characterizes the temporal development
of the width, w —tt F(t/L'). Thus

In d = 1, the exponent P has been measured to be = 0.63
[16] and 0.68 ~ 0.04 [17] by examining the interface
width. It is important to note that making use of Eq. (10)
and measuring the lifetime exponents provides a new,
local, method to measure P.

Equation (9) is expected to describe depinning for any
"reasonable" sequential interface model in a quenched ran-
dom medium, where the most unstable site moves at each
step. Also, Eq. (10) applies for parallel models where all
unstable sites move in parallel at each time step. We have
also studied a "linear" interface model, which before is
believed to describe the depinning of an interface in the
random field Ising model [25]. We have measured the
avalanche dimension D for a discretized self-organized
version, where the force at each site is the same as that
used by Leschhorn in Ref. [26], although we advance only
the most unstable site. In d = 1, D = 2.23 ~ 0.01, and
in d = 2, D = 2.725 ~ 0.01. Substituting these measured
values in Eq. (8) gives g = 1.23 in d = 1 and g = 0.73
in d = 2. These values for g are in agreement with nu-

merical simulations by Leschhorn [26], but higher than the
prediction g = (4 —d)/3 from functional renormalization
group calculations [27].

The "game of life" is a two-dimensional cellular au-
tomaton which has been found to be at or very near criti-
cality [28]. In addition, it has been conjectured [13] that
the game of life belongs to the same universality class
as DP. Numerical measurements of the avalanche distri-
bution exponents [29] support this conjecture. It would
be interesting to also measure the lifetime exponents,
which are predicted to be ~f;„t= 1.54 and r, » = 0.46,
and S(f) —1/f
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