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The conjecture is verified that the optimum, energy minimizing, magnetic flux for a half-filled band of
electrons hopping on a planar, bipartite graph is vr per square plaquette. We require only that the graph
has periodicity in one direction and the result includes the hexagonal lattice (with flux 0 per hexagon) as
a special case. The theorem goes beyond previous conjectures in several ways: (I) It does not assume.
a priori, that all plaquettes have the same ilux (as in Hofstadter's model). (2) A Hubbard-type on-site
interaction of any sign, as well as certain longer range interactions, can be included. (3) The conclusion
holds for positive temperature as well as the ground state. (4) The results hold in D ~ 2 dimensions if
there is periodicity in D —I directions (e.g. , the cubic lattice has the lowest energy if there is flux vr in

each square face).

PACS numbers: 05.30.Fk, 75.10.Lp

The flux phase conjecture states that the ground state
(g.s.) energy minimizing magnetic flux through a square,
planar lattice on which free electrons hop is n- per
plaquette when the electron filling factor is —, [1—4].1

(Zeeman terms are excluded. ) This conjecture, along with
extensions to positive temperature, higher dimensional
geometries, and allowance for some electron-electron
interactions, will be proved here.

If the sites of the lattice are interpreted as atoms in

a solid then flux m would correspond to magnetic fields
available only on neutron stars. The significance of the
flux phase is thus not primarily as a literal interpretation
in terms of physical magnetic fields. One interesting
interpretation concerns mean field calculations connected
with superconductivity. The main interest, however, in
the author's view, is that it sho~s that diamagnetism
(which states that the optimal flux is zero —and which
is correct when the electron density is very small) can
be reversed when the density is high. Indeed, it can be
maximally reversed, as in this case (since flux on a lattice
is determined only modulo 2m. ). Thus, there is a peculiar,
nonintuitive, and poorly understood effect of the Pauli

principle on the way in which orbital motion interacts with
magnetic fields. It has been studied extensively [5—13].
See [10] for some history.

To define things precisely, we start with a general finite
graph A, which is a collection of ~A~ sites and certain
bonds denoted by xy with x and y in A and x o & . A
positive weight ~t, , ~

= ~t,, , ~
is specified in advance for each

bond. By convention t„=0. The hopping amplitude is
then t„= ~t„.~ exp[i@(x,y)], with @(x,y) = —@(y,x) for
Hermiticity, and the problem is to find the numbers P(x, y)
that minimize the total electronic ground state energy
(when p = I/kT = ~) or free energy (when p ( ~).
P(x, y) is the integral of the vector potential, from x to y.

A circuit in A is a sequence of points xl, xz, . . . .r„,x]
with t, „„,4 0 for all i . The Pux th. rough this circuit
is g", , P(x„x; 1) (mod2vr). It is a fact [10] that the

spectrum of the Hermitian matrix T = [r„.), , Eq depends
on the P's only through the fluxes. This is also true of
the Hamiltonians below. No a priori assumption is made
that the flux need be the same in all plaquettes; indeed, the
flux is not even assumed to be the same for up- and down-

spin electrons. We allow different ~t, , ~'s and @(x,y)'s for
the up- and down-spin electrons. We denote these by Tt.
T'. Thus, our results apply to the Falicov-Kimball model
(where T = 0), for example.

The eIectronic kinetic energy operator, in second-
quantized notation, is

K = — ~ t,, c,tc,.t t, , c ~c', g.
.~.i E,'It

The c''s satisfy the fermion anticommutation relations

[c,.„.~ „]= B,,, 6,. [c„„c„}= 0. The electron number

If the Hamiltonian H equals K, then the ground state
energy Eo would be Fq = gz&~~ A(TI) + gx&„A(TI), i.e., the

sum of the negative eigenvalues, A(T), of the matrices TI

and T~.

For bipartite graphs (i.e. , i = A LJ 8, A A 8 =- 0
and t„=0 unless x 6. A, y E 8 or x E 8, y E A) Fo
is achieved when N = ~A~, and hence the appelation
half-filled band, since 0 ( N & 2~A~ in general. In the
Hubbard model H = K + 8'",

but we can also add certain longer range density-density
interactions, W' and spin-spin interactions 8" to be
specified later, of the form (with w„',,

=- iv,'," = iv,'.„ I

d, 1, 2, 3, and S~ being Pauli matrices )

li,', , n, t + n, ~
--

1 ~~, t ~t.„—1

t.iF K
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W, W", and W' are invariant under the unitary hole-
particle(h-p) transformation r, with rc, r ' = cJ . The
kinetic energy operator with complex T's satisfies

rK(T, T )7 ' = K( Tt—*, T—*), (4)
where T* denotes the complex conjugate matrix t y

ty~.
The grand-canonical partition function of our sys-

tem, which we want to maximize, is Z = Trexp[ —PH]
at inverse temperature p. By h-p symmetry, (N) —=

TrNe t'H/Z is iAi, which is the half-filled band. The

p ~ limit is discussed at the end.
Henceforth, all graphs will be bipartite, in which case

all elementary circuits contain an even number of sites and
bonds. The original fiux phase conjecture is that when
H = K, N = iAi, and A is planar the optimum choice of
fluxes is n. in every circuit containing 0(mod4) sites and 0
in circuits with 2(mod4) sites.

Several cases of this were proved in [9,10] and it was
pointed out in [10] that the conjecture cannot always
hold for arbitrary values of it„ri. It depends on A.
Despite this caveat, however, it was proved in [10] that
In[det(T )] = g, in[A, (T)2] is maximized when the fiuxes
accord with the conjecture. This is true for an arbitrary
bipartite, planar graph with arbitrary it,ri's. (On any
bipartite graph, the nonzero eigenvalues of T come in

opposite pairs A, —A.)
The generalized flux phase conjecture is that the above

choice is also optimal for H = E + W + W + W' and
for all p ~ ~. We shall prove this here for graphs
that have a certain periodicity. The usual square lattice
with periodic boundary conditions is included. The result
holds also for higher dimensional, nonplanar graphs. The
type of graphs A considered here is illustrated in Fig. 1

for the planar case. A is wrapped on a cylinder, i.e.,
the sites at the right end are identified with the sites
on the left. The lit„ri's on the vertical edges must be
periodic, i.e., they are allowed to vary in an arbitrary

way along each column, but all the columns must be
identical. The horizontal it„r i's can also vary as we move
vertically but they are only required to have period 2
in the horizontal direction, i.e., every second column of
horizontal edges must be the same. Thus, if we erase
the horizontal edges 1, 3, 5, etc., from every second
column and if we erase edges 2, 4, 6, etc. , from the
remaining columns in between, the hexagonal lattice is
obtained. Our result includes this case, and flux m in each
(imaginary) square then implies fiux 0 in each hexagon.
Octagons, decagons, etc., can also be included provided
periodicity 2 is maintained. We can, if we wish, insert
vertical edges connecting the bottom row to the top row,
as indicated by the vertical arrows in Fig. 1. A will no
longer be planar, but that does not matter.

An easier way to state the periodicity requirements is
to cut A at the two dashed lines, called P in Fig. 1. The
two half cylinders (as well as the it„~ i's on the edges) are

I tooooooo10

P'

~001000

P ~

FIG. 1. Typical 2D lattice with horizontal periodic boundary
conditions (left boxes = right boxes). Different bond weights
illustrate the requirement of horizontal periodicity 2. Dashed
lines (P) are a reflection plane. A generic left-right pair of sites
is indicated by I, r.

required to be mirror images of each other. The it,ri's
on the edges that intersect the dashed lines are arbitrary
because each is its own mirror image. We then say that

iT i is re/lection symmetric with respect to the cutting lines,
P, through the bonds. Our theorem says that the optimum
flux is then m. for those squares containing the cutting
lines. If the it,r i's are refiection symmetric with respect to
(w.r.t,) every choice of cutting lines —which is equivalent
to the above periodicity requirement —then flux m. will be
optimal in every square of A.

The periodicity of the it„ri's mentioned above is not
needed for the theorem below. Only reflection symmetry
is needed. The periodicity comes in when we wish to
insure flux m in every plaquette of A. This is achieved

by repeated reflection in hyperplanes in the standard

way [14,15]; indeed, one can easily derive the usual

chessboard estimates [14].
In fact A could be built in a similar way out of

D-dimensional (hyper)cubes instead of squares. Cutting
lines become cutting (D —1)-dimensional hyperplanes,
and reflection symmetry is generalized in an obvious
way. Our theorem will then state that the optimal flux in

each two-dimensional square plaquette of the (hyper)cubic
lattice is m- in every plaquette cut by the hyperplanes.
As in the D = 2 case, flux m will be optimal in every
plaquette if we have periodicity in D —1 directions.

Returning to the two-dimensional situation (with ob-
vious generalization to D ) 2) we require only that the

U„s in W be constant in the horizontal direction (as are
the it,~i's on vertical edges). As for w," in W" and W',
they are required to be reflection positive for reflection
in vertical planes (the dashed lines, P, in Fig. 1), as ex-
plained below. The inclusion of W" and W' is mainly for
completeness and nothing essential will be lost by setting
W" = W'=0.
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In general, a Hamiltonian can be written (with respect
to a cutting hyperplane, P) as

H=HI +H, +H, „, ,

where HI is all the terms involving sites in the left
half cylinder, H& involves right half-cylinder sites and

H;„, involves both. The subscripts L, R, and int will
also be used for the separate pieces, e.g. , KI, K~, K;„,,
etc. Associated with the left Hamiltonian HL is a right
Hamiltonian, 8(Hz), which is obtained from Hz by
three steps: the unitary transformation R generated by
geometric refection through the plane P; hole partic-le
transformation r; and complex conjugation +. 8(Hz) =
[rR(Hz)r ']'. This notion of operator reflection can be
applied to any operator Az in the left algebra (i.e., Az
is a polynomial in the operators c„,c,. with x in the
left half cylinder). In particular, 8(cI ) = ct . A similar
definition holds for the left Hamiltonian 8(HR) and,
clearly, 8(O(Hz)) = Hz. Note, from (4), that 8(Kz) =
-R(Kz), 0(W ) = R(W ), a = 0, d, s.

Reflection positivity of w„,, means that it is symmetric
under reflections and, for x in the left and y in the
right half cylinder, w„,, can be written as a sum (or
integral) of functions of the form a(x)a(Ry)*. In other
words, W;„,, W „, are sums (or integral) of operators
of the form —Az8(Az), where the (—) in W;„, comes
from 7(n„t + n, t

—1)r ' = 1 —n, t
—n, t, and similarly

for W„,. An important example is w„= w & 0 if x, 'v

are nearest neighbors, w„, = 0 otherwise. Such a W' is
antiferromagnetic; see [14].

Concerning K;„„we note that it is generally not
invariant under the three operations. However, with
l and r denoting a generic left and right image pair
cut by P, we are at liberty to choose $(l, r) = 0, i.e.,

ti„= itl„i ~ 0, and we do so. (Note: to simplify the
notation the symbols, ]' and o., will not be indicated. )
This is so because a simple gauge transformation c„
exp[ —ig(l, r)]c„makes ti„) 0 without changing any
fluxes. No circuits are involved. This choice of phase
for tI„ is only a convention, for it does not change any
physics, but it is important for (6) and (7) below.

With the foregoing convention for H;„„the Hamiltonian
is said to be reflection symmetric if O(Hz) = Hq The.
flux m theorem will be a corollary of the following
lemma.

Lemma (reflection positivity) —With H as. a given in

(5) with respect to some hyperplane P, assume that K;„,
satisfies the above positivity convention. Assume also
that W;"„, and W„, are reflection positive. Then, for each
P ) 0 and with H;„, fixed,

Z(Hz, Hg) ( Z(Hz, 8(Hz) )Z(8(Hg), HR), (6)

where Z(Hz, HR) —= Trexp[ —PH]. Moreover, if H~ ——

O(Hz) and if Az (Aq) is any even operator in the left
(right) algebra (e.g. , Az is a sum of monomials in c¹ of

even degree) then

iTrAzA, e z'"i ~ TrA, O(A, )e P"Tro{A,)A, e ""
.

7]
Proof: Use the Lie-Trotter formula to approximate

e ~H as a product of M && 1 factors V = V;„,V& V&, i.e. ,

e ~H = hm, M -. VM, where V,„, =
1

—PH, M/M, VI

exp[ PH—z/M], V~ = exp[ PH—R/M]. Notice that Vt

contains only even polynomials in the ~"'s, and so V&

commutes with every right operator (including odd opera-
tors). Likewise, V& commutes with all left operators.

If the M factors of V;„, are multiplied out we obtain
for VM a sum of terms, each having the form X =
a] VI Vga' VL Vpa3VL Vg . OM VL V~ and each a; has one of
three forms: (i) Az8(Az), with Az an even operator or
{ii) ci c„or (iii) —cic„. Our strategy is to move all the left
operators to the left without changing the order either of
the left operators among themselves or the right operators.
The operators A~ commute with all the right operators
and cause no difficulty. The difficult point is that the ci
operators have to move through the c¹operators to their
left, and each such move gives rise to a —

1 factor.
I claim that either TrX = 0 or else the number of

—1 factors is even. To see this note that by particle
conservation (and the particle conserving nature of Vz and

V~) the number of c, c,. factors must equal the number oft

clc t factors if TrX 4 0. Call this common number J.
The number of —1 factors is independent of the order of
these 2J factors and their order relative to the AzO(Az)
factors. The first cI must move through zero c„'s. The
second c& moves through one c"„,etc. Thus, the number of
—1 factors is 0 + 1 + 2 + . + (2J —1) = J(2J —1).
On the other hand, each cict term carries a —1 factor and
there are J of these. Altogether there are J + J(2J—
1) = 2J'- = 0(mod2) factors of —1, as claimed.

In brief, X can be brought into the form X = XLX~
with Xi and XR even operators. Since Trl = 4', we
have 4I' ITrX = TrXz TrX~. Moreover, (TrXz)" = TrO(Xz)
and thus iTrXzi-' = TrXzO(Xz). Now, denoting the vari-
ous X's by X'", we have iTrVMi2 =

i g TrX
TrXz TrXg [2 4

—-'I&l g, iTrX f2 g iTrX
TrXz 8(Xz ) g TrXg O(Xg) Z(Hz, 8(Hz))Z(Hg,

8(HR)). (7) is obtained in the same way. Q.E.D.
Theorem (flux 7r is optimal) Assume th. —e itt&i are

reflection invariant w. r.t. P Assume also. that O(Wz ) =
W& and W;„, is reflection positive, o. = 0, d, s. Then Z is
maximized by putting flux ~ in each square face of A that
intersects P.

Proof: We make the gauge transformation above so that

K;„, has tI„= hatt„iI. From (6), we have that when Hz, H~
is optimal, so is Hz, O(Hz) and 8(H~), Hz But the.
statement Kq = 8(Kz) implies the fiux n. condition by
(4). Q.E.D.

Remarks. . {i') It is interesting to note that (6) can also
be used to show that when the fluxes are fixed at m. and
one varies over the it„ i, the lowest energy is attained
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in a reflection symmetric configuration of ~t,~~. A one-
dimensional version of the lemma was proved and used in

[16] to study the Peierls instability for the Hubbard model
on a ring.

(ii) The lemma and theorem say that flux 7r for T& and
T~ is optimal. If we fix $1(x,y), we are then free to choose
@t(x,y) = Pt(x, y), since any other choice with flux m.

differs from Pt(x, y) by a trivial gauge transformation,
c,t ~ e'i'~'~c, t. Thus, when (t„~ = (t, ), the minimizer
can have T~ = Tt thereby preserving SU(2) invariance.

(iii) To discuss the ground state we let P ~. Do
we get N = (A( or does the g.s. belong to N = (A( + m

and N = ~A~
—m with m ) 0? In the Falicov-Kimball

model, generally, the g.s. has N = 2 )A( and N = 2 (B), as
the only choices [17] (but note that 2(A( = 2)B) = (A( in
our case). In the following cases I can also prove that at
least one g.s. has N = ~A~.

First, assume reflection symmetry and positivity w.r.t.
aIl hyperplanes parallel to P, so that we are now looking
at a K with flux m in every plaquette of A. After a trivial

gauge transformation, this condition can be realized with
real T, which we assume henceforth. Next, assume Tt =
Tt so that SU(2) invariance holds. Third, assume Wd =
W' = 0, i.e., the Hubbard model. As is well known, we
can then construct another set of SU(2) generators —the
pseudospin (See. [18] and, for more details, [19].) By
using the spin and pseudospin raising operators g, c,tc,t,
g„(—I)"c„tc„t[with (—1)" = +1 for x E A, —1 for x E
B], and their adjoints, one can conclude that the absolute
ground state belongs to N = (A( or N = )A( ~ 1.

Finally, to show that the g.s. has N = ~A~, assume that
either U„~ 0 for all x or U, ~ 0 for all x. We can then
use spin-space reflection positivity [18] in Fock space,
together with the evenness of ~A~ in our case, to infer
N = IAI. [This reflection positivity tells us that if a
g.s. has numbers N~ = A, N~ = p, then there are ground
states with (A, A) and (p„, p, ). Thus, if [A~ = 2m and
N = IAI —1, so that N1 = m, Nt = m —1, then there is
also an (m, m) g.s.] If all U„P 0, the g.s. is unique [18].

Extensions: The flux phase for the half-filled band
has been proved here for a large class of Hamiltonians,
including the ones common in the physics literature. The
proof is sufficiently simple that it obviously applies to
many other models.

One generalization is to fermions with n 4 2 colors,
i.e., from SU(2) to SU(n).

Certain specialized forms of electron-phonon interac-
tions can be included.

Another generalization is to SU(2) instead of U(l)
gauge fields [15,20]. Thus, t «g ct c~ is replaced
by lrx, lZ, ct U.;c„with (t,, ( given, as before, and
with U„» H SU(2) to be determined. [Even more gen-

erally, we can replace t»c,&cY~ + t»c~~cY~ by z ~z, c~~ X

M„„".(r," (M,"'„.c„, where M„.„, E SU(2) and (t„" ( is given;
in this case the SU(2) matrix associated with xy is

U„Y = M„„,M~,Y.] Again, we will find that the en-

ergy is minimized by flux ~ in each plaquette, i.e., the
product of the four matrices around a plaquette satisfies

» .z z
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