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Statistical Mechanics for a Class of Quantum Statistics

S.B. Isakov
Medical Radiology Research Center, Obninsk, Kaluga Region 249020, Russia

(Received 2 November 1994)

Generalized statistical distributions for identical particles are introduced for the case v here filling a
single-particle quantum state by particles depends on filling states of different momenta. The system of
one-dimensional bosons with a two-body potential that can be solved by means of the thermodynamic
Bethe ansatz is shown to be equivalent thermodynamically to a system of free particles obeying
statistical distributions of the above class. The quantum statistics arising in this way are completely
determined by the two-particle scattering phases of the corresponding interacting systems. An equation
determining the statistical distributions for these statistics is derived.
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There are several approaches applicable to the inves-
tigation of generalized statistics for identical particles in
one dimension [1—6]. In the Schrodinger picture, statis-
tics are defined by conditions which many-particle wave
functions must satisfy at the boundary of the configuration
space for identical particles (for N identical particles on a
line, the latter is R~/S~ and can be represented by the
region x~ ) x2 ) . . ) xq in R ) [1,3,4]. The Heisen-
berg quantization of identical particles [2] deals with the
algebra of observables for a system of identical particles.
Haldane [5] has proposed a definition of fractional statis-
tics in which "statistical" interaction is characterized by
the change of the number of single-particle states, by —g,
in adding one particle into the system (g = 0 and g = 1

correspond to bosons and fermions). This definition was
applied to excitations in the fractional quantum Hall effect
(see also [7]).

A family of statistics (which was originally introduced
in [2] for two particles in terms of the Heisenberg
quantization of identical particles) was defined, in the
Schrodinger picture, by the boundary conditions on the
wave functions 1/I

—P;(,(x; —x, ) as x; —x, +0,
with a ~ 0, where xl, x2, . . . , are particle coordinates
(with a = 0 and u = 1 for bosons and fermions) [3]. We
call these statistics 1Dfractional statistics The relatio.n to
anyons in two spatial dimensions [8] was established: 1D
fractional statistics of order o. is relevant to anyons with
statistical parameter 0 = m o. in the lowest Landau level
where the dynamics of the system becomes effectively
one dimensional [9]. An equivalence of a system of free
particles obeying 1D fractional statistics of order n to a
system of one-dimensional bosons interacting through the
two-body inverse square potential V(x) = n(u —1)/x"-

(Calogero-Sutherland system [10])was also stated [2,3].
Another family of statistics was introduced in Ref. [1]

for which two-particle wave functions for the relative mo-
tion obey (8/B )Px( ) xcP(x) as the relative coordinate
x +0, with 0 ~ c & ~ (c = 0 and c ~ correspond
to Bose and Fermi statistics). The generalization of the
N-particle wave function was given in Ref. [4]. These
statistics can also be modeled by means of an interaction:

a free system with wave functions satisfying the above
conditions is equivalent to a system of bosons with the
6-function interaction potential V(x) = cB(x) [2,4].

In Ref. [11]an approach to generalization of statistics
in the framework of statistical mechanics was suggested
by the author where statistical distributions for identi-
cal particles more general than the Bose and Fermi dis-
tributions were introduced. It was assumed in [11] that

single-particle quantum states are filled by particles inde-
pendent of each other (as for Bose and Fermi statistics); in

other words, "statistical" interaction occurs only between
particles in the same state. No assumptions were made
concerning allowed occupation numbers. In [6] statisti-
cal distribution for the 1D fractional statistics was derived
which turned out to belong to the class of distributions in-

troduced in [11].
In this paper we introduce statistical distributions for

identical particles for a more general case where statis-
tical interaction also exists between particles of distinct
momenta. %e next show that integrable one-dimensional
bosonic systems are equivalent to free systems with par-
ticles obeying statistical distributions of this class. New
statistics for identical particles are generated in this way.
The statistics modeled by the 8-function interaction [1]
belong to this class.

%e start from the expression for the grand partition
function of a quasiclosed subsystem resulting from the
Gibbs distribution [12]:

'" ' " = gexp[P(pN —E „)],
JV, »

where p = 1/T is the inverse temperature, p is the
chemical potential, the index n numbers states of the
subsystem at given particle number N in it, and E& „are
the energies of these states.

Consider a gas of free identical particles occupying
an interval of length L on a line [13]. If single-particle
quantum states are filled independently of each other, one
can choose particles in the same state as a quasiclosed
subsystem [11,12]. Here we consider the case where
filling a state depends on filling all the other states, that

2150



VOLUME 73, NUMBER 16 PHYSICAL REVIEW LETTERS 17 OcTQBER 1994

is, there is a statistical interaction between particles of
different momenta. Therefore we apply the formula (1)
to the whole system.

The total number and energy of free particles are
N = gk N» and F = gk e»N», where Nk is the number of
particles of momentum k and ek is the energy of a particle
of momentum k [14]. Then (1) reads

where

(Nk) k

x, = exp[p(p, —ek)]

(2)

(3)

P = (PL) ' 1n ({xk)). (7)
The statistical distribution (6) has to satisfy the Boltz-

mann limit condition, that is, it has to go to the Boltzmann
distribution nk"" '"" = xk as all xk 's vanish (when the
average occupation numbers of quantum states are small

is the Gibbs factor for a single-particle state of momentum
k, {Nk) denotes the set of the numbers Nk with all
possible momenta for a given distribution of particles over
momenta, and the summation in (2) goes over ail allowed
sets {Nk) which characterize statistics of particles.

If states of different momenta are statistically indepen-
dent [15], the partition function (2) is factored into the
product of the partition functions corresponding to sepa-
rate states: .= pk k. The latter decomposition does
not hold for the case under consideration.

To treat the general statistical distributions, we will
not make any assumptions concerning allowed sets of
the occupation numbers {Nk) Inste. ad we observe that
according to (2) the function depends on p, and T
only through the combinations xk of (3) with all possible
rnomenta. Therefore the dependence of on p, and T
can be written down explicitly as

:- =:-({xk)),
where the notation {xk) is similar to {Nk). We will regard
this dependence as arbitrary except for the Boltzmann
limit condition (see below).

The average particle number is given by the thermody-
namic identity N = (BA/8—p)r, wher, e 0 = —p ' ln

With of (4), we get

8
ln =({xk)).

BXk

We also introduce the equilibrium distribution of par-
ticles over momenta nk. On the basis of (5) we identify

8
nk = xk ln ({xk)),

BXk
(6)

so that g» nk = N. The statistical distribution [or, equiva-
lently, the partition function (4)] determines all the
thermodynamic quantities for a free gas. For example,
the pressure of the gas is obtained from the relation
0 = —PL to give

and effects of the gas degeneracy are negligible [12]).
This gives the constraints

(8/Bxk) ln ({xk )) 1 (8)

as all xk vanish.
Consider now the statistics for which the partition

function (4) admits an expansion in integer powers of the
Gibbs factors {x»). It is more convenient to treat ln

instead of

1
ln = Qxk + Q akk xkxk +

k 2 k,k/

That ln goes to zero as all xk's vanish means that
the vacuum state is supposed to be nondegenerate. The
coefficients of xk's in (9) were chosen as equal to one
in order to satisfy the conditions of the existence of the
Boltzmann limit (8). The coefficients akk are symmetric,
by definition, under perrnutations of their subscripts. The
statistical distribution (6) corresponding to (9) is

nk xk 1 + yakk'xk' + (1o)
k )

For the distributions discussed in [11]one has akk ~ Bkk

(in particular, bosons and fermions have akk = Bkk and

akk = —
Bkk ). akk 4 0 for k 4 k' corresponds to theF

occurrence of statistical interaction between particles of
momenta k and k'.

To the expansions (9) and (10) there corresponds the
virial expansion for a gas of free particles. Equation (9)
can be rewritten as

—PA = ln =biz+ b2z +2

where z = ep& is the fugacity, b& = gk exp( —pek), and

1
b2 = — akk exp[ p(&k +—ek )].

k,k'

It is seen from (11) that bi, b2, . . . , are nothing but the
cluster coefficients [16] which determine the coefficients
of the virial expansion (p = N/L is the gas density)
Pp = p + A2p + . In particular, A2 = b2L/bi—
[16]. With the above expressions for b& and b2, the
latter formula evaluates the second virial coefficient
carrying information on the statistics and dispersion law
of particles.

Consider now an integrable one-dimensional system,
namely a system of interacting bosons on a ring of
circumference L with periodic boundary conditions which
is governed by the Hamiltonian

1 8
H = ——g 2 + g V(x; —x,). (12)

BX;

We assume that the system can be solved by means
of the TBA [15,17]. The TBA was introduced in [15]
to treat the thermodynamics of the systems described
by the Bethe ansatz form wave functions. It was then
observed that for applicability of the TBA it is sufficient
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that the wave functions have the Bethe ansatz form only
in the asymptotic regions where particles are far apart,
which enables one to consider systems with long-term
interactions [17].

In [6] we used the TBA to show that a system of
bosons interacting through an inverse square potential is
equivalent thermodynamically to a free system. Here we
generalize that statement to the potential V(x; —x, ) of the
general form.

We first observe that the applicability of the TBA
implies the additivity of the energy of the system (12):

E = kp(k—)L dk,
2

(13)

where p(k) is the distribution function of the (interacting)
particles in the TBA scheme. The expression (13) can be
interpreted as the energy of a system of free particles with

energies E'k = 2k if we identify

2mp(k) = nk, (14)

where nk is the statistical distribution of particles in the
equivalent free system.

The other thermodynamic quantities of the interacting
boson system can be found from the expression for the
pressure [15,17]

P =P ' ln(1+ e P'"),
"

dk
—oc 2' (15)

X (p(k —k') ln(1 + e ~'" ), (16)2'
with (p(k —k') the derivative of the phase shift 8(k —k')
for the scattering of two particles of momenta k and k' in
the potential V(x): p(k —k') = (I/L)86)(k —k')/Bk

where the so-called pseudoenergy e(k) being also a
function of tu, and T is determined by the TBA equation

1e(k)= —p, + —k +P
2

Now compare (15) with the expression for the pressure
of a gas of free particles (7). This gives the identification

ln = gin Ak, (17)

where Ak = 1 + exp[ —Pe(k)]. From (16), the equation
for the Ak is obtained:

Ak 1 + xk (Ak') (18)
kl

where xk is given by (3) with the energy of free
particles ek = 2k2 [in accordance with (13) and (14)].
This equation shows that Ak and, according to (17), the
partition function of the equivalent free system depend
on )L(, and T only via the combinations xk, that is, fits

exactly into the form (4). Expanding Ak in powers of
xk's, we obtain from (18)

Ak 1 + xk 1 g 'Pk —k'xk' +
k'

Inserting this into (17), we see that the corresponding sta-
tistical distribution nk (6) falls into the class of distribu-
tions of the form (10), with

1
akk' Pk —k' ~k —k' ~

2
(19)

Thus the integrable boson system in question may indeed
be interpreted as equivalent to a system of free particles
obeying statistics characterized by the expansions (9)
and (10).

This equivalence can also be extended to the nonequi-
librium case. The nonequilibrium entropy of the inte-
grable system at hand in the thermodynamic limit reads

S= p+ph lnp+ph

—p ln p —pk ln pk]L dk,

where ph is the density of the holes arising in the TBA
scheme. Eliminating ph from this expression with the aid
of the relation [15,17]

2p(p + ps) = 1 —f p(k —k )p(k )Ld'k''

and using, in addition, (14), we get

S = g 1 —g(pk k nk ln 1 —g(pk k nk —nk lnnk
k k' kl

nk g (Pk-k'nk' nk g (pk-k'nk' (20)

This expression can be interpreted as the expression for the nonequilibrium entropy of the equivalent free system.
Indeed, varying (20) with respect to nk, at the particle number N = gk nk and the total energy F = gk eknk held
constant, with the associated Lagrange multipliers Pp, and —P, gives as an extremum condition the relation for the
equilibrium statistical distribution BS/Bnk + ln xk = 0 or

nk 1 g ()('k, k'nk)—
Pk —kl

nkl +kl k'nk' (21)
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with first terms of the expansion of nt, from (21) in powers
of xk's coinciding with (19).

For a system of bosons interacting with the inverse
square potential, q&t, k

= (a —I)/Bt, k [17]. In this case
Eq. (21) reduces to the equation for the statistical distri-
bution for 1D fractional statistics [6]:

nq(1 —ank) [1 + (1 —n)nq] ' = xk. (22)

That pk k ~ Bqk in this case corresponds to statistical
interaction only between particles of the same momenta.
Contrary to that, for bosons with the 8-function interac-
tion, p(k —k') = —2c/[c + (k —k') ] [15], which im-

plies statistical interactions between particles of distinct
momenta. The function p(k —k') may be regarded as a
measure of statistical interaction between particles of mo-
menta k and k'.

The expression for the nonequilibrium entropy (20) can
serve as a starting point for establishing correspondence
with Haldane's description of statistical interaction [5].
Applying Haldane's definition of fractional statistics to
particles of the same momentum and using the Boltzmann
formula S = 5 ln I'k, where I'q is the statistical weight
of particles of momentum k (the dimension of the space
of many-particle states for particles of momentum k in
Haldane's terminology), we come to (20) with q&t. k

=
(g —1)bkq, corresponding to 1D fractional statistics of
order g (for g ~ 0) [18]. Similarly, the expression (20)
with generic yk k enables one to formulate a definition
in the spirit of Haldane for the statistics discussed in this
paper [19].

In conclusion, we have introduced statistical distribu-
tions (6) and (10) for ideal quantum gases with statistical
interaction between particles of different momenta. One-
dimensional integrable bosonic systems were interpreted
as equivalent to free systems of this class. The rele-
vant statistical distributions are determined by Eq. (21)
with different q&k k corresponding to different integrable
systems. Note that statistical distributions, originally ob-
tained from Eq. (21) for a quadratic dispersion law of par-
ticles, can then be used for evaluation of thermodynamic
quantities of (quasi)particles having different (e.g. , linear)
dispersion laws.

I thank Jon Magne Leinaas and Carsten Liitken for
interesting discussions.

Note added. —After this paper had been submitted,
a closely related report [20] appeared also stating the
above equivalence of one-dimensional integrable systems

to free systems, starting from a description of statistical
interactions in the spirit of Haldane. In another report
[21], a Haldane-like approach was used to derive the
statistical distribution for 1D fractional statistics (22). I
am grateful to J.M. Leinaas who supplied me with these
reports.
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