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One uncertainty in our picture of the Universe is whether galaxies are a fair or biased represen-
tation of the distribution of mass in the Universe. I show that dependence of the galaxy three-point
correlation function on configuration shape can be used to separate the contributions of gravitational
clustering and nonlinear bias. This allows a determination of the amount of bias in the galaxy distri-
bution that is independent of the slowing of growth of fluctuations in an open universe, unavoidably
mixed in determinations using peculiar velocities. Application to the Lick Observatory catalog gives

a bias parameter b = 3.0 £ 0.65.

PACS numbers: 98.65.Dx, 98.35.4+d

In recent years our picture of the distribution of matter
in the Universe has become both enriched and clouded
by the concept of bias, the possibility that the spatial
distribution of galaxies is not necessarily the same as
the distribution of mass, dominated by a nonluminous
dark matter. Kaiser [1] introduced bias originally to
understand the enhanced clustering strength of clusters
of galaxies over galaxies themselves. This enhancement
can be explained simply when clusters are identified as
preferred locations where the galaxy density exceeds a
certain threshold [1-5]. The concept of bias was soon
extended to embrace the possibility that galaxies them-
selves may not trace faithfully the underlying mass dis-
tribution. Taken broadly, bias can range from a galaxy
density contrast proportional to the mass contrast (“lin-
ear bias”) to galaxies “painted on” arbitrarily, with no
regard to the underlying mass.

To lowest order, the effects of bias on large scales can
be summarized in the value of the linear bias parameter
b, the ratio of the density contrast in the biased distri-
bution to that in the underlying density: 6, = b8, where
6 = [p(x) — p|/p is the fractional contrast in mass density
p and &g = [ng(x) — 7]/ is the fractional contrast in
galaxy number ng. The standard technique to determine
b is to compare observed peculiar velocities (departures
from the mean Hubble expansion) with the velocities ex-
pected from gravitational acceleration if the mass distri-
bution is traced by the galaxies. This same information
is also used to determine the fraction of critical density Q
(see below), and the method is able to determine only the

parameter combination 8 = Q%/7/b. The most reliable
determinations use infrared-selected galaxies, in particu-
lar the 2-Jy IRAS catalog [6]. Comparing the local group
velocity inferred from the microwave background dipole
aristocracy with the gravitational acceleration expected
from IRAS galaxies, Strauss et al. [7] find 8 = 0.657318
or f = 0.557329 (1-0 errors), from a maximum likelihood
estimation using two models of the velocity distribution.
Integrating all available observed radial peculiar veloci-
ties to obtain the gravitational potential and again com-
paring with the distribution of IRAS galaxies, Dekel et

al. (8] obtain B = 1.287375 (95% confidence level). Us-
ing the anisotropy induced by peculiar velocities in the
two-point correlation function in redshift space, Hamil-
ton [9] finds B = 0.697028 and Fisher et al. [10] obtain
B =0.45%3%7 (1-0 errors).

How well galaxies trace mass is an important question,
because much of what we think we know about the distri-
bution of matter in the Universe comes from galaxy ob-
servations. The higher order galaxy n-point correlation
functions have been used in characterizing large-scale
structure and in providing constraints for discriminating
between models. It has been known for some time that
low order galaxy correlations obey the so-called hierar-
chical pattern, where the three-point correlation function
of the galaxy number density contrast can be expressed
to a high degree of accuracy as

G123 = Q (12613 + &12823 + £13€23), (1)
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where £15 = (6(x1)6(x2)) and Ci23 = (6(x1)6(x2)6(x3))
are the two- and three-point correlation functions [11,12].
The quantity @, a dimensionless amplitude of order
unity, is observed to be remarkably constant, insensitive
to the size or shape of the configuration of points. Per-
turbation theory calculations of the three-point function,
in contrast, give a result for the three-point amplitude
@ that, while independent of scale, has a strong depen-
dence on configuration shape (see below), a dependence
that is not seen in the data, even on scales where pertur-
bation theory should apply. This apparent contradiction
between the perturbation theory predictions and the ob-
servations should perhaps have provoked more concern
than it has received. However, most observational re-
sults are from the strong clustering regime, and most
progress in this regime has come from numerical simu-
lations, which produce @ constant for a large variety of
initial conditions [13,14]. Although never stated explic-
itly, perhaps the underlying thought has been that non-
linearity on small scales affects the three-point function
on large scales, and that perturbation theory calculations
are thus inadequate. Whatever the reason, for upward of
a decade there has been little attention paid to analytic
calculations of higher order functions in favor of numer-
ical simulations. These have been immensely useful, but
as observations extend to ever larger scales, the time has
come to return to the analytic side. In this paper I show
how galaxy correlations can be used to determine b and
also higher order information about bias in the galaxy
distribution. I show that the galaxy three-point corre-
lation function in particular, through dependence of the
three-point amplitude @ on configuration shape, can sep-
arate effects of gravity from nonlinear bias in galaxy for-
mation.

On sufficiently large scales, density fluctuations are
weak enough that perturbation theory should suffice to
describe their evolution. On large scales it is convenient
to work in the transform domain. To linear order, the
fluctuation amplitude &(k,t), the Fourier transform of
the density contrast § = [p(x,t)—p]/p grows by an overall
scale factor, & = A(t)8o(k), where 6y(k) is the amplitude
at some early time ¢y and A(t) is a growing function of
time [15]. For the canonical model (matter dominated,
Q = 1, no cosmological constant, no spatial curvature)
this solution is A(t) ~ t¥/3 ~ a(t), where a(t) is the cos-
mological expansion factor. Initial density enhancements
grow with time; this is gravitational instability. The pe-
culiar velocity is

F(Q H/d3 ' 5(x )‘ -

where H is the Hubble constant, and F(Q) = aA/aA ~
Q4/7 [15,16] is the ratio of the rate of growth of fluctua-
tions to the overall rate of cosmological expansion, both
of which depend on the fraction of critical density 2.
The full description of gravitational instability is non-

13, (2)
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linear [15], the density contrast obeying

926 24 06

5 + = — 5 — 4G ps = 4nGps* + —V5 Vo

+ {-ﬁvlvj{(l + o). (3)

where v and ¢ are the peculiar velocity and gravitational
potential, related to the density by the equation of con-
tinuity and Poisson’s equation. In perturbation theory
such a nonlinear theory generates a density contrast that
is a sum of terms to all orders in the initial amplitude,
§=6W 4 6@ L 5O . (4)
where 6(%) ~ A™6. For most purposes these higher or-
der terms are negligible, but they can be important in
cases where the leading contributions vanish. For exam-
ple, for an initially Gaussian distribution, these nonlinear
terms induce nonvanishing higher order correlations for
all orders. For the three-point function in the transform
domain or “bispectrum,” Bjaz = (6 ( 1)(5(k2)6(k3)> eval-
uated for >_k; = 0, gravitational instability gives [17]

Bz = Q12P(k1)P(k2) + Q3P (k1) P(ks)
+ Q23 P(k2) P(ks). (5)

where

10 kioky (ki k) 4 (kick )\’

Qo=+ kik; <E+E)+7< kik; ) -
For an open universe, the coefficients 1—0 and % become
instead 1 + 2k and 1 — 2k, where to hlgh accuracy K =
2Q B for01<Q<landk — }asQ—0][18].

To remove the main dependence on the power spec-
trum, we can normalize to the hierarchical amplitude
Qyzg, defined as

Bias
PP, + PP + P2P3.

In general, Q123 depends on the three wave vectors k;, or
on three quantities sufficient to specify the configuration
(the k’s are constrained, Y k; = 0, and in an isotropic
universe statistics do not depend on orientation). In a
pure hierarchical model, Q23 is exactly constant and
has the same value as for the spatial three-point function
in Eq. (7) [12]. In the perturbation theory result, for
a power law P(k), Q123 is independent of overall scale
k and of time. For equllateral triangle conﬁguratxons,
ki = ko = k3 and k; - k = —— for all pairs, and Q = 7,
independent of initial spectrum as well. In general, Q123
depends on configuration shape, that is, on ratios of sides
and angles, k;/k; and k; - kJ, indeed a particular depen-
dence on conﬁgurat;xon shape is the identifying signature
of gravitational instability. The solid lines in Fig. 1 show
the gravitational instability result for Q(8) for triangular
configurations of one side k; = k, second side ks /k, = %,

Q123 = (7)
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FIG. 1. Three-point amplitude Q(6) expected from per-
turbation theory. Solid lines show gravitational instability
predictions for P(k) ~ k™, n = -1, n =0, and n = +1, and
for Q = 1 (top to bottom); long-dashed lines show same for
Q = 0.1. Short-dashed lines show an example of the effect of
nonlinear bias, with b = 3 and b2/b* = 0.75.

separated by angle 8, for a power law P(k) ~ k™, n = —1,
n = 0, and n = +1. Dynamical methods, comparing
peculiar velocities with the gravitational acceleration ex-
pected from density contrasts, determine only the param-
eter combination 8 = Q%/7/b, but the three-point ampli-
tude depends much more weakly on Q2. For Q = 0.3 the
factor Q%/7 is 0.503, while Q for equilateral triangles dif-
fers from the @ = 1 value Q = % by 2.2%. The effect
on Q(0) in an open universe is shown in the long-dashed
lines in Fig. 1. If we have reason to believe from other
observations that 0.3 < Q < 1, then determinations of b
from dynamics are uncertain by a factor of 2 or so, while
from the three-point amplitude @, lack of a precise value
for Q leads to an uncertainty of only a few percent.

The expected behavior of galaxy correlation functions
depends on how the galaxy distribution is related to the
mass distribution. As cited above, to lowest order, the
effects of bias on large scales can be summarized in the
value of the linear bias parameter b, the ratio of the den-
sity contrast in the galaxy distribution to that in the
underlying mass density, 6; = b6. Physically, by what-
ever mechanism, it would seem that the distribution of
matter must determine where galaxies form; thus, the
distribution of galaxies must be a functional of the mass
distribution, ny = F[p(x)]. If the range of influence is not
too large, perhaps it is not unreasonable to take this to be
a local function, n(x) = f(p(x)). Expanding in a power
series, such a local bias can be written as §; = 3 bx6* /k!
To lowest nonvanishing order, the resulting three-point
function is again hierarchical, with contributions from
nonlinear gravity and from nonlinear biasing:

1 b
Qg = 3@123 + gg-, (8)

where Q123 is the amplitude for the underlying density
(19,20]. The dashed lines in Fig. 1 show an example of
the effect of bias on Q(6), with b = 3, by/b% = 0.75.
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FIG. 2. Power spectrum p(k) from the Lick Observatory
catalog. The dashed line shows p(k) ~ k™ with n = —1.41 for
5 < k < 30.

In light of the considerations presented above, I next
reexamine some previous observational results. The Lick
Observatory catalog of Shane and Wirtanen (SW) [21]
has characteristic depth D* = 209h~!Mpc [11] (h is
Hubble’s constant in units of 100 kms~!Mpc~1!), while
the scale of nonlinearity in galaxy clustering is roughly
8h~Mpc, so that on scales beyond 4% of the depth of
the catalog perturbation theory should apply. Previous
results for Q123 [11,12] have seen at best only a vague
dependence on configuration shape. With the advantage
of looking for a particular dependence on shape and by
concentrating on a particular subset of possible configu-
rations, I show that there appears to be a weak but signif-
icant dependence on configuration shape, of just the form
suggested by gravitational clustering plus local bias.

The power spectrum and bispectrum for the Lick cata-
log for a square area around the north galactic pole were
computed by Fry and Seldner [12]. For a projected cata-
log, the observed power spectrum and bispectrum P, and
By, of the projected distribution 6,(x) = [ dz F(z) 6(x, 2)
are related to the intrinsic P and B by

Bk = [ £ R PR + K2, ©)

P

By() = [ S92 FROFR)F() B, k), (10)

where F is the Fourier transform of the selection func-
tion F(z) and k§ = —k{ — k. For kD* > 1, the main
contribution to the integrals is for the scale of smearing
k' < k (the wave vector in the projected space), and thus
P and B can be evaluated at k¥’ = 0 and taken of the in-
tegral with little effect from the smearing (of order a few
percent; included in the quoted results). The remaining
integrals are then simple numerical factors equivalent to
those studied in detail for the direct correlation functions
[11]. The power spectrum P(k) (k in units of “waves per
box”; physical wavelengths are A = 260h~'Mpc/k) plot-
ted in Fig. 2 goes as P(k) ~ k™ with index n ~ —1.4 for
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FIG. 3. Q(6) from the Lick Observatory catalog. The solid
line is the expected result from gravitational instability with-

out bias for power spectrum index n = —1.41. The dashed
line is fit to Eq. (7), with b = 3.5, by/b% = 1.2.

5 < k < 30. Figure 3 shows Q(6) averaged for triangles
with legs in the same 5 < k; < 30 having two legs with
ratio 0.4 < k2/k; < 0.6. Bins contain from 6 to 15 points.
Results from the projected angular data have been scaled
to give Q for the true, three-dimensional distribution by
an overall multiplicative correction factor of roughly 1.3
[11] that if incorrect can change the values of the bias pa-
rameters, but not the conclusion that a bias is present. A
small but significant departure from @ = const with the
form expected from gravitational instability is apparent.
Fit to a constant @, the data in Fig. 3 have a reduced
x2 = 1.10 (for 14 degrees of freedom), while a fit to the
form in Eq. (8) for n = —1.4 gives x? = 0.41 (13 d.o.f.).
Using all data for the same range of scales, not just the
selected shapes in Fig. 3, x2/241 = 1.12 for Q = const
and x2/240 = 1.04 for Eq. (8), and most important, re-
sults in the same values for the fit parameters. For the
SW data these are b = 3.5+ 1.1, by /b? = 1.2 £ 0.1 (data
in figure), b = 3.0 £ 0.65, by/b? = 1.1 £ 0.1 (all data).
This value for b is somewhat higher than from dynamical
methods [7-10], but not by much more than 1 standard
deviation. Indeed, once we admit the possibility of a
bias, it seems unavoidable that the bias function will be
different for different populations of galaxies, and it is
already recognized that the bias parameters for optical
and infrared-selected galaxies differ [22].

In summary, in this paper I have presented for the first
time the detection of a dependence of the cosmological
three-point amplitude @ on configuration shape. The
dependence has just the form expected if galaxies in the
Lick catalog are a biased realization of the underlying
mass distribution with b = 3.0 £ 0.65. This result must
be taken as a preliminary determination, for the Lick
catalog comes from an earlier era and has a poorly known
and possibly variable selection function, reflected in part
in a larger overall value for @ than found in other data.

The shape dependence of the three-point amplitude
provides a measure of b that, unlike the usual determi-

218

nations from dynamics, only weakly depends on the den-
sity parameter 2. The inferred value of b depends on the
spectral index n, but the goodness of fit is almost inde-
pendent of n. This is in part because the curves in Fig. 1
differ with n in a way that is almost exactly equivalent to
bias; for instance, the n = 1 curve can be fit ton = —1
with b = —10.4 and by /b? = 0.543, with an rms difference
of only 0.018. On the other hand, this means that the
shape dependence of Q) is a robust test of the underlying
applicability of gravitational instability.

The large value inferred for b reflects the mild vari-
ation with configuration shape in the data. If this is
not because of bias, then it requires some other explana-
tion. In numerical simulations, nonlinear evolution erases
the dependence of @ on configuration shape [14,23], but
the numerical results suggest that the scales considered
here should be comfortably in the quasilinear regime.
Projection effects can also wash out shape dependence,
but again not on the scales considered. I have included
here only contributions from gravity and bias. When
the initial conditions are non-Gaussian, both the initial
three- and four-point functions can also contribute to
the observed galaxy skewness [24], but unless the initial
non-Gaussianity is large, the gravitational instability and
bias contributions dominate. Work on models with non-
Gaussian initial conditions also needs to be extended to
determine the shape dependence of the full Q;23, a highly
model dependent calculation. All this seems a fruitful
area for further work.
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