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Equation of State of the Hydrogen Plasma by Path Integral Monte Carlo Simulation
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The equation of state of the hydrogen plasma is calculated by the restricted path integral Monte Carlo
method. We have investigated the plasma from the classical weak coupling regime to the quantum

strongly coupled regime. Good agreement is found with the existing theories for low electronic
degeneracy. Inception of molecular formation is observed at low densities and temperatures.
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The knowledge of the properties of dense ionized
matter is important for a wide range of physical situa-
tions, from the hot and dense astrophysical plasmas to
the cold electron plasma in solids. Despite this, exact
(ab initio) calculations of the statistical properties of
even the easiest Coulombic system, the hydrogen plasma,
are nonexistent because of the difficultie of simulating
fermion systems. Recently the method of restricted paths
to treat Fermi statistics within path integral Monte Carlo
(RPIMC) simulations has been introduced [1,2], and here
it is applied to the hydrogen plasma at high density and
high temperature, a regime which is physically important
but still outside the present experimental capabilities.

For a system of N protons and N electrons in a vol-
ume 0 at temperature T, conventional dimensionless pa-
rameters are I = e2/akttT which measures the coupling
in the classical limit, where a = (3/4nn)'I3 is the ion-
sphere radius, n is the electron density, k& is the Boltz-
mann constant, and e is the charge unit. Classical weak
coupling is for I « 1. At T = 0 the coupling is parame-
trized by r, = a/ao, where ao =h2/m, e2 is the elec-
tron Bohr radius and m, the electron mass. The weak
coupling limit is r, « 1. At T ) 0, 8 = T/TF measures
the degree of degeneracy of the electrons, where TF =
h2(3m 2n, )2 3/2m, ke is the Fermi temperature of the fully
degenerate, noninteracting electron gas. 0 = 1 roughly
separates the quantum domain (8 ( 1) from the classi-

cal domain (8 ) 1). In Fig. 1 different lines of constant
I' (coupling) and 8 (quantum effects) are shown. Fermi
statistics of protons start to play a role at 8 —m, /m~—
10 and will be ignored. Electron relativistic effects ap-
pear at temperatures and/or densities higher than those
considered here [3]. Formation of atoms or molecules
takes place in the left lower corner of Fig. 1. Partial
ionization may occur around kttTt ——e2/2ao = 13.6 eV
and for n ~ nI —2 X 10 cm defined by TF = Tl
[3]. Molecules may form at lower temperatures, below
TD —50000 K, the temperature of dissociation of an iso-
lated H2 molecule.

The domain in Fig. 1 can be split into three regions
where different theoretical approaches are useful. In the
first region 8 ~ 10, the system is nearly classical and

weakly coupled (I ( 0.1). The Debye-Hiickel theory
(DH) provides an exact limit for 8 » 1 (classic), I' «
1 (weak coupling) giving Pn" /nkttT = 1 —Q2/31'3I2

[3]. The first corrections in density to this equation of
state (EOS) have been obtained up to n5I2 [4]. For
stronger coupling (I —1), thermodynamic and transport
properties have been obtained by molecular dynamic
simulations of semiclassical models [5—7]. Such models
are limited to 8 ) 1.

The second region is where the electrons can be
considered in their ground state (8 ~ 0.1). In the limit of
high density (r, « 1), the electrons behave as a uniform
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background and one recovers the classical one component
plasma model [3]. At smaller densities, the electron
gas is polarized by the protons, and static and dynamic
properties of the system have been computed by linear
response theory based calculations [3] and by dynamical
techniques [8,9].

In the intermediate domain (0.1 ~ 8 ~ 1), the elec-
trons are partially degenerate correlated fermions, po-
larized by the protons. Electrons have been treated by
density functional theories (DFT) at various degrees of
approximation, and the correlations between protons have
been calculated by classical integral equations [3,10—
12]. Ichimaru and co-workers also provided an analyti-
cal expression for the EOS of the hydrogen plasma,
obtained by fitting all the existing results in the above
three domains.

Finally, a plasma phase transition has been predicted to
occur at densities around r, —2 and for T ~ 1 eV outside
of the domain investigated here [13].

All the methods mentioned so far are based on mod-
els or approximations which are specific to one domain
and cannot easily be extended outside. Therefore an
ab initio method which considers protons and electrons
at the same microscopic level and is capable of treating
all densities and temperatures is highly desirable. This is
in principle provided by path integral Monte Carlo simu-
lations. A simulation of two protons and two spin-unlike
electrons has been already performed, but larger systems
of distinguishable particles were unstable because Fermi
statistics were neglected [14]. The recently developed
RPIMC is capable of accurate simulations in all regions
of the phase diagram. By RPIMC we have studied the
hydrogen plasma for all the thermodynamic conditions re-
ported in Fig. l. Our main aim was to provide a test of
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Fig. 1. Characteristic lines of the hydrogen plasma in the
(n, T) plane. The solid thick lines are the pressure ionization
threshold (vertical) EF ——13.6 eV and the temperature ioniza-
tion threshold (horizontal) T = 13.6 eV. The filled triangles
indicate our calculations. The line 8 = 0.4 is the threshold for
the permutations inside the system to occur.

the existing theories and to check the limits of applicabil-
ity of the method. Investigation of the atomic-molecular
regime is in progress and will be published separately
[15]. We found a general good agreement between the
theoretical predictions of DFT based approaches and our
results for the thermodynamic properties and the pair cor-
relation functions in the region of small electronic degen-
eracy 0 ~ 0.4, which is also where we observe a small
number of exchanges in the system. At higher degener-
acy, RPIMC results deviate significantly from theoretical
predictions. Inception of molecular formation is observed
only at r, = 2 and for the lowest temperature investi-
gated, namely T =- 0.05 hartree~ =- l.36 eV. Preliminary
studies indicate that at this density, stable molecules are
obtained only for temperature as low as T —5000 K ==-

0.43 eV [15].
In the remainder of the paper v e briefly describe the

method, we discuss our result in more detail, and finally
we draw some conclusions.

The path integral Monte Carlo simulation is a well-
established computational technique to obtain statistical
mechanics averages of quantum many-body systems [16).
The density matrix between configurations R and R'
(R = jr~, . . . , r~)) at the inverse temperature P is written
in terms of the density matrix at higher temperature as
follows:

pp(R, R', P) ~ g( —
)

y

pD(R; i R;:r) . (1)

with the boundary conditions Ro = R, RM =- 2 R'. Here
is the Hamiltonian, M is an integer, v. = P/M, and

9 is a permutation of electron coordinates. Subscripts
D and F indicate distinguishable and Fermi particles, re-
spectively. Simulation of fermions requires the follow-
ing: (a) an approximation for the high temperature density
matrix (HTDM) pii(R, R'; r); (b) an algorithm to sample
efficiently the permutation space; (c) a method to treat the
Fermi statistics.

(a) The choice of the HTDM must be accurate to
minimize the number M of intermediate points (slices)
in which the interval P has to be partitioned. We have
used the pair-product approximation [16]. Essentially we

put into the HTDM the exact hydrogen atom density
matrix as well as the exact density matrix for a pair of
electrons. We used the Ewald image method to calculate
the potential energy and the "action. " Our trial density
matrix is

po(R; ), R;;r) = p'"'(R; ), R, ;r)

X exp — r,~, r,'-, ;7

—U'(R; ), R, ;r), (2)
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where p(o)(R; I, R;;r) is the density matrix for free
particles, u(r;, , r,', ; r) is the short range action for a pair
of particles, and U'"(R; I, R;; r) is the long range action.
A complete derivation will be given elsewhere. The pair-
product form for the HTDM has been previously found
[17,18] to provide an essential improvement over the
more commonly used "primitive" approximation [16]. In
the present calculation, the optimal value of 7- was found
to scale as r, and we fixed 7. according to the relation
r = (0.05r2) hartrees '. At the lowest temperatures this

gives paths as long as 200 slices.
(b) Efficient sampling of the configuration and the

permutation space can be achieved by the bisection method
[16]. Typically 8—16 electronic time slices are moved
at once. The proton paths are very localized, and to
efficiently sample their configurations we also performed
rigid Monte Carlo translations of the proton paths.

(c) Simple application of Eq. (1) would lead to ex-
tremely large error bars because of the minus sign as-
sociated with odd permutations. We applied the RPIMC
method [2], adopting the nodal surfaces of the tempera-
ture dependent noninteracting density matrix (referred to
NI in Ref. [2]). This is the finite temperature extension of
the fixed-node approximation used to simulate fermions at
T = 0. Only paths with positive trial density matrices are
allowed which implies only even permutations and only
positive contributions to any statistical average. As the
trial density matrix approaches the exact density matrix
this becomes exact. Occasional moves of only three-body
permutations of like-spin electrons were found to suf-
fice to the formation of "macroscopic" exchanges of the
Fermi liquid state. We used two reference points as ex-
plained in [2]. Ground state studies on hydrogen suggest
that the fixed-node error on the energy is less than 0.4%,
and the error at finite temperature should be even smaller
[19]. This is well within the error bars of our data (few
percent).

We studied a system of 54 protons and 54 electrons.
We checked that at r, = 1 and for two values of tempera-
ture, namely T = 4 and T = 0.25 hartrees, we obtain the
same results for systems of 54, 82, and 110 electrons.

Our main concern is to compare the EOS of the
hydrogen with the existing theories, in particular the
analytic form provided by Ichimaru and co-workers [11].
We found that irrespective to the density, RPIMC results
for the potential energy V are described fairly well by
the Ichimaru function, as given in Eq. (3.142) of Ref. [3]
and Eq. (39) of Ref. [11], up to I —3 above which it
predicts a somewhat larger interaction energy. Figure 2
shows, for all densities investigated, the excess of total
kinetic energy with respect to the ideal Fermi system
as obtained by RPIMC and from the Ichimaru EOS.
Deviations from the ideal gas behavior appear around
8 —2 at all densities, and, at a given 8, they get more
pronounced as the density decreases. For 0 ~ 0.4, the
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FIG. 2. Excess kinetic energy with respect the ideal quantum
system versus the degeneracy parameter 8 at r, = 0.5 (open
squares), r, = 1 (crosses), r, = 1.61 (open stars), and r, = 2
(filled squares). The continuum curves are the Ichimaru's fit
predictions [11].

Ichimaru prediction is rather good at r, = 2 and r, =
1.61, while at larger densities the agreement gets worse
and, in particular, it fails in predicting the negative excess
kinetic energy found at r, = 0.5. On the other hand, for
8 ~ 0.4, the Ichimaru prediction works well at r, = 0.5,
while it underestimates the excess kinetic energy at lower
densities, the disagreement gets 1arger for decreasing
density. As already stated, 8 = 0.4 corresponds to the
threshold for Fermi statistics. We note that a considerable
number of permutations occur in the system for 8 ~ 0.4.

In Fig. 3 we show the excess pressure with respect
to the ideal Fermi gas for two values of the densities
investigated, namely r, = 1 and r, = 2, and we compare
our results to the DH theory, to the virial expansion of

10 0. 1

—O. Z

C1

Q

—0.4

0

—O. Z

0. 1
r

10

~ - —0.4
CL

-0.6

10

FIG. 3. Excess pressure with respect to the ideal quantum
system at r, = 1 (upper) and r, = 2 (lower). Filled squares are
RPIMC results, continuum line is the Ichimaru fit, dashed lines
are the DH theory, and dot-dashed line is the virial expansion
of Ref. [4]. The crosses indicate the results of semiclassical
model calculations [6].
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FIG. 4. I' = 10. Electron-proton (upper) and proton-proton
(lower) correlation functions versus r/ao at r, = I (solid),
r, =1.61 (dotted), and r, = 2 (d. ashed).

Ref. [4], to the Ichimaru function [3,11], and to results
of semiclassical models [6]. As for the kinetic energy.
the Ichimaru EOS fails below 0 ~ 0.4 and it predicts an

absolute value of the excess pressure larger by about 30 k
at I —10. The virial expansion at order n-"~'- gives a good
prediction of RPIMC data for I ~ 0.4 at all densities.
This indicates that the first correction to such theory is
due to the Coulomb coupling. The DH prediction holds
for 0 ~ 3, indicating as the first nonclassical term comes
from the quantum kinetic energy in this range of densities.
Finally, the semiclassical model denoted by I in Ref. [6]
provides rather good predictions up to I —2.

The general good agreement between RPIMC and
the Ichimaru theory arises from the fact that the pair
correlation functions have been accurately represented in
the theory. In Fig. 4 we show at three values of the
density, namely r, = 1, 1.61, and 2, the proton-proton and
the proton-electron correlation functions at I = 10 where
the Ichimaru theory fails. We observe that as the density
decreases the proton-proton correlation function changes
its shape and develops at r, = 2 a clear signature of
molecular formation. This picture is further supported by
the the spin-unlike electron-electron correlation function
(not shown here) which at r, = 2 presents a pronounced
peak close to the. origin as a signature of pairing to form
bounding states of molecules. On the other hand, no firm

proof of the formation of electron-proton bound states can
be seen in the electron-proton correlation function.

In conclusion, we have investigated the phase diagram
of the hydrogen plasma in the high-temperature —high-
density region above and near the ionization thresholds.
A good agreement has been found between the existing
theories and our simulation results for values of the

degeneracy parameter 0 ~ 0.4. Below this value we
observe differences between theory and simulation, and

we also note that the exchange of electrons occurs. Such
results validate the theory and demonstrate that RPIMC is

a powerful tool to investigate quantum plasmas. Although
the method is not exact, the systematic error introduced by
the fixed node constraint is about an order of magnitude
smaller than the statistical errors in the hydrogen plasma
and can be systematically improved. At sufficiently high
coupling and low densities a clear signature of molecular
formation is observed. A natural extension of the present
calculation is the investigation of the plasma phase
transition, a first order phase transition from the plasma
to the molecular state [13]. This work is in progress.
Another open issue is about the characterization of bound
states and the definition of the degree of ionization of
the plasma. To this aim a general criterion based on
the analysis of the spectrum of the two-body off-diagonal
density matrix has been proposed [20], and we plan to use
it to analyze the RPIMC configurations to determine the

population of the various chemical species.
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