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Phase Diagram of Fluid Vesicles
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The phase diagram of self-avoiding fluid vesicles as a function of the bending rigidity a and the
pressure increment p is studied using Monte Carlo simulations and scaling arguments. For p & 0, a
line of first-order transitions is observed between a branched-polymer-like phase and an inflated phase.
The first-order line ends at small positive p, it extends to negative p as a line of compressibility
maxima. For p ~ 0, and sufficiently large ~, stomatocytes are stable. The scaling behavior as a
function of system size is markedly different for positive and negative p.

PACS numbers: 87.22.Bt, 05.40.+j, 64.60.Fr

The thermal behavior of membranes and vesicles
has recently attracted a great deal of attention [1—3].
Membranes are (approximately) incompressible two-
dimensional films composed of amphiphiles or lipids
which —on experimentally relevant time scales —do
not change their area. For this reason, the shape and
fluctuations of membranes are controlled by their bending
rigidity [4] rather than by a surface tension as is the
case for interfaces. Theoretical and experimental work
on vesicles has been restricted almost exclusively to
membranes with a very large bending rigidity ~, where
thermal fluctuations are of only minor importance [5].
Very little is known about the behavior of vesicles in the
low-bending-rigidity regime [6].

The two intensive thermodynamic fields which de-
termine the conformation and structure of vesicles are
the bending rigidity ~ and the pressure difference p =
p;„—p,„tbetween the vesicle interior and exterior. p
is the thermodynamic variable conjugate to the enclosed
volume V. The behavior of self-avoiding low-bending-
rigidity vesicles has been studied theoretically as a func-
tion of tr for p = 0 [7,8], and as a function of p for
tr = 0 [9]. In the first case, a peak in the specific heat
is observed at a = k~T, the interpretation of which is the
subject of intense current debate [7,10—12]. The ques-
tion which arises is whether there is a phase transition
separating a low-bending-rigidity, branched-polymer-like
phase [7,8,13,14] from a high-bending-rigidity, extended
phase. For ~ = 0, a first-order transition is observed be-
tween a low-pressure, branched-polymer-like phase and
a high-pressure, inflated phase [9]. Experimentally, low-
bending-rigidity vesicles have been shown to be able to
penetrate through the intact skin [15],and may thus have
a large number of applications in medicine, biotechnol-
ogy, and other areas.

In this paper, we present the results of extensive Monte
Carlo simulations for the phase diagram of fluid vesicles
as a function of the bending rigidity tc and (positive and
negative) pressure increment p. The model we study
consists of N hard spheres of diameter cr = 1, which are

connected by flexible tethers of length lo = Q2.8 to form
a two-dimensional network of spherical topology. This
choice of Ip ensures self-avoidance. In order to allow for
diffusion within the membrane, and thus to describe fluid
membranes, tethers can be cut and reattached between the
four beads which form two neighboring triangles [16,17].
A Monte Carlo step (MCS) then consists of an attempt to
update the positions of all N beads by a random increment
in the cube [—s, s]3, followed by N attempted tether
cuts. We chose s = 0.15 so that approximately 50% of
the attempted coordinate updates were successful. The
bending elastic energy is [18,19]

A/kttT =

ting(1

—n; . n, ),
(lj)

where n; is the unit normal vector of triangle i, and
the sum runs over all pairs of neighboring triangles.
Averages are typically calculated over runs of 20 x
10 MCS. Details of our simulation procedure can be
found in Ref. [7].

The ~-p phase diagrams for systems consisting of
N = 127 and N = 247 beads are shown in Fig. 1. The
first-order transition observed previously [9] at tr = 0
persists to finite values of ~. With increasing ~, the
transition occurs at lower and lower values of p, since
both the bending rigidity and the (positive) pressure
act to increase the volume of the vesicle. This first-
order transition is characterized by a bimodal probability
distribution function P(V) for the volume. We locate the
transition at the point where the two maxima in P(V) are
of equal height. These maxima approach each other with
increasing ~, and merge into a single peak at a = 0.32
for N = 127, sc = 0.45 for N = 247, and ~ = 0.52 for
N = 407. Thus, the line of first-order transitions extends
to higher values of ~ for larger systems sizes. For
values of ~ beyond this "critical" point, we find a line of
maxima of the compressibility g = (V) ' B(V)/itp This.
line extends to the highest value of ~ studied in this
paper, ~ = 6. It crosses the ~ axis at ~ = 1.0 for N =
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FIG. l. Phase diagram of Quid vesicles as a function of
pressure increment p and bending rigidity K, for (a) N = l27
and (b) N = 247. First-order transitions are denoted by solid
lines, compressibility maxima by dotted lines. The dumbbell-
metastable disocyte transitions are shown as a dashed line. The
error bars span the spinodals for the transition to stomatocytes.
The solid line through their midpoints serves as a guide to the
eye.

127 and K = 1.2 for N = 247. For larger ~, there is a
rapid change in the vesicle shape, from roughly spherical
prolate to dumbbell, as this line of susceptibility maxima
is crossed with decreasing p. A few typical configurations
are shown in Fig. 2.

For large ~ and sufficiently negative pressures, stoma-

tocytes are found to be stable. Stomatocytes decay with

increasing pressure into dumbbels, and with decreasing ~
into branched-polymer-like shapes. The transition at large
~ is very strongly first order, and therefore cannot be local-
ized easily. The error bars shown in Fig. 1 span the spin-
odal lines. Stomatocytes are also unstable at large negative
pressures with respect to Oat, pancake-shaped configura-
tions since the latter have a smaller volume in our model.
In the limit of very large negative pressures these pancakes
transform smoothly into branched-polymer-like configura-
tions. The lowest value of ~ for which stomacotyes are

stable is ~ = 3.1 for N = 127 and ~ = 2.4 for N = 247.
The region of stability of stomatocytes therefore extends
to smaller values of ~ for larger system sizes.

We also see discocytes, but it appears that they are only
metastable, and always decay into stomatocytes. Never-

theless, we do observe a transition between discocytes and

prolate, dumbbell-shaped vesicles. There is a line of first-
order transitions between these two phases for large ~,
which ends in a lo~er critical point located at ~ = 3.5
for N = 127 and ~ = 3.3 for N = 247; the critical point
therefore moves to lower K with increasing system size. A
line of compressibility maxima extends beyond this criti-
cal point; however, it is very short and never approaches
the line of compressibility maxima mentioned above.

An analysis of vesicle shapes in the low-temperature
limit [20] implies that the correct scaling variable in the
large-~ regime is the reduced pressure p = pV, ~h,„,/K—
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F16. 2. Typical configuration~ of vesicles with X = 247
monomers. (a) ~ = 3.0, p = —0.27 (stomatocyte); (b)
~ = 2.4, p = —0.19 (dumbbell); and (c') ~ = 2.4, Ir ==- —0.35
(branched polymer).

pN-""-~ '. Phase transitions should occur at p ==- const.
The scaling behavior of both the discocyte-dumbbell
transitions and the line of compressibility maxima for p ~
0 are consistent with this prediction. The peak height,

y„,„.„ofthe compressibility along this line scales as

g,„—N ~, with y = 1.35 ~ 0.05 for p ~ 0. Although
this seems to imply that a continuous phase transition
occurs in the thermodynamic limit on crossing this line,
more work is needed to verify this possibility.

The large-~ portion of our phase diagram differs from

that obtained by minimizing the bending energy in the

pressure ensemble [21], where only a single transition

from sphere» to prolates is found with decreasing p ~
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(V) = p N"', with cu =, v+ =
3v —1' 3p 1

(2)

with an exponent v = 0.79, so that 3' = 0.47 ~ 0.01
and 3v+ = 1.735 ~ 0.005. We have therefore calculated
(V) as a function of p in the inflated phase, for N =
0.50 and ~ = 1.0, with vesicle sizes N = 247 and N =
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FIG. 3. Phase diagram of fluid vesicles in the pressure en-
semble, as a function of reduced average volume
U = P(V)(N —2) with P = 3' 2sl vr' (l), and
bending rigidity ~, for W = 247. Compressibility maxima
are denoted by dotted lines, the dumbbell-metastable disocyte
transitions by a dashed line. The solid line in Fig. 1(b) has
been used to estimate the average volume (V) at the transition
to stomatocytes.

0. In this ensemble, stable non-self-intersecting T = 0
configurations cease to exist before other shape transitions
can occur. We find much better agreement with the
T = 0 analysis of vesicle shapes in the volume ensemble
[20], where a transition from stomatocytes to discocytes
occurs at a reduced volume v —= V/V, ~h„,= 0.59, and
a transition from discocytes to dumbbells at v = 0.65.
This can be seen in Fig. 3, where we plot the phase
diagram as a function of ~ and the reduced volume
u = P(V)(N —2) i Here, P = 3'i 2 i n'i (I) is a
constant, and (I) = 1.35 is the average distance between
neighboring beads [22]. The good agreement between
our results and the phase diagram obtained by minimizing
the bending energy in the volume ensemble is due to the
fact that the effects of both self-avoidance and thermal
fluctuations are included in our analysis.

The scaling behavior in the small-~ portion of the
phase diagram is different. We have argued in Ref. [9]
that for ~ = 0 the crumpled-to-inflated transition occurs
at p = pNI' = const, with p, = 1/2. This is consistent
with the data presented in Ref. [9] when a "shift variable"
No is introduced to account for the leading corrections
to scaling [23], so that p = p(N Np)". We find here
that this scaling behavior holds not only for a = 0, but
along the whole line of first-order crumpled-to-inflated
transitions. Furthermore, data taken along the line of
compressibility maxima for ~ ( 1.0 also scale in this
way. When no shift variable is used, our data scale best
with p, = 0.65 ~ 0.05. With the present range of vesicles
sizes, ho~ever, it is not possible to distinguish between
these two estimates for p, .

In the inflated phases, for K = 0, the volume was found
in Ref. [9) to scale as

+ —a dA(ct + c2)
1 2

2 A

+ K dA c]c2 (3)

where A —N is the surface area, ci and c2 are the local
principle curvatures, z is a N-independent constant, and
M = A/2m. $2 is the equivalent number of "monomers" of
a branched polymer. The first two terms in Eq. (3) are
the branched polymer entropy, while the last two terms
give the average bending energy and the average Gaussian
curvature. The average volume is (V) = Ag/2. The
bending energy is estimated to be ~z(g)Ag ~/2, where
KR (g) = a —(3/4n. )ln($/a) is the renormalized bending
rigidity [24] at length scale g. Here, a is of the order
of the tether length lo. Finally, the average Gaussian
curvature term is given approximately by 4n.Tilt ($), where
Kg (g) = a + (5/6m. )ln($/a) is the renormalized saddle-
splay modulus [25]. Since the surface area is held
constant, the only variable in gb~ is the artn radius g,
which is determined by minimizing the free energy.

The free energy of a stomatocyte of radius R, on the
other hand, can be estimated as

/kgT = 2[8+ eg(R)] + 4mÃg(R) + f„„p—p(V)

+ c —d
A

K
(4)

where the first term is the average bending energy of the
inner and the outer shell of the stomatocyte, with R
A/8m. , the second term is the average Gaussian curvature
contribution, the third (constant) term the bending energy
of the neck region, and the last term the steric repulsion
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407. For ~ = 0.50, we find that 3' = 0.42 ~ 0.02 and
3v+ = 1.718 ~ 0.010, in agreement with Eq. (2). Taking
into account that the range of pressures for which the
data scale decreases with increasing ~, we believe that
this value for cu is consistent with that obtained for
~ = 0. Our results therefore support the conclusion
that the scaling behavior in the inflated phase near the
line of crumpled-to-inflated transitions is described by a
single, universal exponent v = 0.79. For ~ = 1.0, we find

3~ = 0.265 +. 0.02 and 3v+ = 1.653 ~ 0.010 which is
considerably smaller than the values obtained at smaller ~
[but still consistent with the scaling relation 2v+ = I + cu

implied by Eq. (2)]. However, data taken for this value
of sc probably lie outside the small-~ scaling regime.

Finally, a rough estimate for location of the line of
transitions from stomatocytes to crumpled configurations
can be obtained as follows. Assume that the branched-
polymer-like configurations are made of thin cylindrical
arms of radius g. The free energy can then be approxi-
mated as

3
gbp/ksT = —M In(z) + —ln(M) —p(V)
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[26] between the two shells at distance d, with an

amplitude c . This approximation should be valid for
d much smaller than the vesicle radius R. The average
volume is estimated to be (V) = Ad/2. The only variable
in this case is the distance d, which is again calculated by
minimizing the free energy.

The results for the location of transitions from stom-
atocytes to crumpled configurations obtained using this
approximation reproduce the main features seen in Fig. 1.
The transition line shifts to lower values ~ with increas-
ing N; simultaneously its pressure dependence becomes
weaker. The analysis also indicates that a limiting form
of the transition line is reached rather quickly with in-

creasing system size, so that our Monte Carlo results for
N = 247 can be expected to be close to the thermody-
namic limit.

It would be very useful if these results could be com-
pared with experiments on low-bending-rigidity vesicles.
It seems that the best possibility for obtaining large ves-
icles with bending rigidities of order k~T, which are stable
on experimental time scales, is to use mixtures of either a
lipid with a short-chain amphiphile [27] or of two lipids
with different spontaneous curvatures [28]. Mixtures have
the additional advantage that the value of ~ can be tuned

by changing the composition of the membrane [28,29].
Indeed, the only current experiments with low-bending-
rigidity vesicles have utilized these methods [15,30].
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