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Weak Localization in Chaotic versus Nonchaotic Cavities:
A Striking Difference in the Line Shape
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We report experimental evidence that chaotic and nonchaotic scattering through ballistic cavities
display distinct signatures in quantum transport. In the case of nonchaotic cavities, we observe a linear
decrease in the average resistance with magnetic field which contrasts markedly with a Lorentzian
behavior for a chaotic cavity. This difference in line shape of the weak-localization peak is related to
the differing distribution of areas enclosed by electron trajectories. In addition, periodic oscillations are
observed which are probably associated with the Aharonov-Bohm effect through a periodic orbit within
the cavities.

PACS numbers: 72.20.My, 05.45.+b, 72.15.Gd, 73.40.Kp

A central question for "quantum chaos" in open
systems is whether scattering from a system which
classically exhibits chaotic dynamics will give rise to
observable quantum signatures distinct from a nonchaotic
system [1]. Considerable attention has been focused on
the connection between the quantum S matrix and the
classical dynamics [1—8]. Recent theoretical studies
indicate that the quantum transmission probability, which
is intimately related to the conductance of a microstruc-
ture, directly reflects the classical behavior [3,5,7,8]. In
particular, in the chaotic case the statistical distribution
of the quantum transmission probability as a function of
either the incident momentum k [2] or magnetic field B
[3] reflects the existence of a single classical trapping time
scale; the power spectrum of the conductance fluctuations
G(k) or G(B) decays via a single exponential for several
decades. In addition, the average transport should show
a negative magnetoresistance peak, known as weak lo-
calization (WL), centered about B = 0 with a line shape
in the form of a Lorentzian [7]. In direct contrast, in
the nonchaotic (integrable) case, the lack of a single time
scale gives rise to a power law tail in the power spectrum
for large frequencies [5—8] and a highly unusual linear
line shape for the weak-localization peak [7].

In this Letter, we focus on the WL line shape. We
present experimental evidence that the shape is strikingly
different for transport through a ballistic chaotic cavity in
the form of a stadium versus a nonchaotic cavity in the
form of a circle. Specifically, we observe a Lorentzian
line shape for the stadium and a linear line shape for
the circle down to —0.09Bl/2, where B&i2 refers to the
half width at half maximum. Our results are obtained
in microstructures fabricated from a very high quality
GaAs/Al„Gai „As heterostructure crystal. For each
type of cavity, 48 devices are measured at once to average
out the universal conductance fluctuations We directly.
compare these results with numerical calculations of
nominally identical cavities; the good agreement between
theory and experiment strongly supports our view that the

difference in line shape is caused by the difference in the
character of the classical dynamics.

We extend our basic observation in two different ways.
(1) As the temperature is lowered from 4.2 K to 50mK,
the WL in the stadium remains Lorentzian while that in
the circle evolves from a Lorentzian to the linear shape
below 400 mK. This suggests that as the phase-coherence
length L~ grows longer trajectories which enclose a larger
area begin to contribute to coherent backscattering at
lower magnetic fields. (2) We present evidence that stable
periodic orbits can exist in a ballistic cavity by observing
a single periodicity Aharonov-Bohm effect at the lowest
temperatures in certain nominally rectangular structures.

Whereas in the case of classical chaos the transi-
tion from nonchaotic to chaotic behavior has been stud-
ied extensively [9), intense experimental investigation of
"quantum chaos" in open systems has only begun in re-
cent years. Previous experimental studies of quantum
chaos in microstructures have focused on the universal
conductance fluctuations (UCF) and WL peak of indi
vidual cavities [10—12] or on the magnetoresistance of
antidot arrays [13]. Marcus et al. [10] investigated the
power spectrum of G(B) for a stadium versus a circle; the
fact that their circles showed more power at the higher
frequencies than their stadia was the first experimental
evidence for a difference between chaotic and nonchaotic
behavior in quantum transport (exponential decay versus
power law). The deviation occurred only after the power
had decayed substantially, however, so that effects of
elastic and inelastic scattering have to be carefully con-
sidered. In fact, the power spectrum for the circle can be
fit by an exponential over one and a half decades; the re-
sulting rate is smaller than for the stadium but is consis-
tent with a reasonable estimate of the small-angle mean
free path [8]. The possibility of differing interpretations
of this work makes a clear observation of the differ-
ence between chaotic and nonchaotic cavities essential.
Later studies concentrated on the magnetotransport of an
individual stadium cavity [11,12] and therefore did not
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address the issue of chaotic versus nonchaotic behavior.
Finally, several studies [10,11,13], particularly that on
the magnetoresistance of antidot arrays [13], have seen
evidence for interference effects between short nonuni-
versal paths, such as the circular trajectories enclosing
an antidot in the case of Ref. [13]. We return to this is-
sue at the end of the paper.

Our devices are fabricated on a doping well
Ga A s/A 1„Gai „As heterostructure crystal with an
electron density of 3.3 X 10" cm and a mobility of
1.8 X 106 cm2/V s. Measurement is performed with

a lock-in amplifier at 23 Hz at a current of 20 nA for
T ~ 1.6 K and 100 nA at T ~ 2.4 K. Length scales:
The transport mean free path is 17 p, m compared to a
typical cavity diameter of ~ 1.25 p, m. The small-angle
scattering length is estimated from the observed 2%
modulation of G(B) (at T = 0.5 K) due to electron
focusing [14] for injection and collection point contacts
separated by 11.6 p, m in linear distance. Assuming an

exponential decay in the number of unperturbed electrons
as a function of distance, we deduce a small-angle scat-
tering length of 4 p, m. The phase-coherence length L~
is estimated to exceed 15 p, m below 400 mK [15]. Size:
The cavities are fabricated by electron beam lithography
and ECR (low voltage reactive ion) etching. Both the
stadium and circle cavities are fabricated in one electron
beam write on the same device chip. The perimeter
is defined via a 1500 A wide line etched to depletion.
The lithographic dimension of the stadium, as shown in

the inset of Fig. 1(a), is 1.25 x 0.85 pm with a 0.4 p, m

straight portion. The circle of equivalent area is of
diameter 1.08 p, m [Fig. 1(b)]. The electron gas resides
568 A below the surface, and the etching is 200 A in

depth. From the pinch-off characteristic of narrow con-
strictions = 1000 A wide, we estimate a depletion length
of 300 ~ 100 A., yielding an area of 0.81 p, m with a
corresponding magnetic field scale of 51.4 G for one Aux

quantum penetrating the enclosed area. Geometry: The
ratio of the entrance plus exit widths to the perimeter
is roughly 1 to 6.5. Therefore, the number of phase
coherent bounces before exiting is cut off mostly by the
openings rather than L~ when T ( 400 mK. The device
for a given cavity type consists of 48 cavities arranged in

6 rows in a series of 8 in parallel. The spacing between
rows is 25 p,m, comfortably larger than L~.

In Fig. 1 we show the weak-localization, negative
magnetoresistance peak for the stadium and circle samples
at 50 mK. The resistance value refers to that of a single
cavity. The stadium WL peak can readily be fitted

by a Lorentzian line shape with a peak height AG of
0.4e /h and a Biy2 of 13 ~ 1 G. In contrast, the line
shape for the circle is certainly non-Lorentzian, following
an unusual linear decrease with magnetic field. The
peak is characterized by EG = 0.22e /h and Biy2 = 11 ~
1 G. While we concentrate on studying the line shape,
we note that the magnitude of the WL peak in the
stadium is consistent with recent theoretical work [16]
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FIG. 1. The magnetoresistance for (a) 48 stadium cavities
and (b) 48 circle cavities, normalized to a single cavity, at
T = 50 mK. The weak localization peak line shape shows
a Lorentzian behavior for the chaotic, stadium cavities. In
contrast, the line shape for the nonchaotic, circle cavities shows
a highly unusual, triangular shape (linearly decreasing). The
vertical bar indicates the equivalent change in conductance,
AG. Insets show electron micrographs of the cavities which are
fabricated on a high quality GaAs/Al, Ga, ,As heterostructure
crystal.

which predicts a universal magnitude of 0.25e-'/h per spin
channel in the fully chaotic case.

The possibility of such an unusual line shape in a
nonchaotic (integrable) system was first pointed out in

the work of Baranger et al. [7] who gave a general
semiclassical argument connecting the linear line shape
to the existence of a power-law distribution of clas-
sical areas in a nonchaotic system. In order to demon-
strate the connection between our experimental results
and the theory, in Fig. 2 we show the change in con-
ductance [—AG = G(B = 0) —G(B)] obtained from nu-

merical calculations for ballistic billiards which have the

same nominal shape as the experimental structures. The
conductance is calculated through its relation to the total
transmission, G = (e'-/h)T, by using the recursive Green
function method to obtain T for a discretized billiard (us-

ing ka = 1.4) [17]. The average conductance needed to
make contact with the experiments is found by averaging
over energy in the range for which there are 2—9 propa-
gating modes in the leads.
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[18]. The transport mean free path is 10—20 times
larger than the total mean free path. Figure 2(b) shows
that the linear WL line shape in the nonehaotic case is
not destroyed by a smooth disordered potential whose
strength is chosen so as to match the total and transport
mean free paths in the experimental structures (Wd;,. =
0.25). For comparison we show that strong boundary
roughness scattering does change the theoretical line
shape to a Lorentzian, as expected (Wd;, = 5 was used on
the last meshpoint before the hard wall). We conclude
that small-angle scattering is weak enough in these
experiments so that the nonchaotic nature of the classical
paths in the ideal circular cavity is actually observed.

Conclusive evidence that phase coherence is essential
for the experimental observations is provided by the
temperature evolution of the WL peak shown in Fig. 3.
For the stadium, the line shape is Lorentzian for the entire
temperature range, as shown for the Lorentzian fits at
50mK and 1.6 K. On the other hand, while the circle
appears to be Lorentzian-like at the higher temperatures,
albeit with a slightly cusped peak at 8 = 0, the full linear

FIG. 2. Calculated magnetoconductance (X —l) as a func-
tion of Aux through the geometric area of the cavity for the
(a) stadium and (b) circle shown as insets. The line shape is
Lorentzian for the ballistic stadium (solid squares) as well as
for a stadium with strong surface roughness scattering (dia-
monds). The line shape is more triangular for both the ballistic
circle (triangles) and the circle with a weak smooth disordered
potential (solid squares), but changes to Lorentzian for strong
surface roughness scattering (diamonds). For the disordered
potential, the total mean free path is approximately five times
the diameter of the cavity. The similarity of line shape between
this calculation and the experiment (Fig. 1) is striking for both
structures.
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Note the clearly Lorentzian line shape for the stadium
and the more triangular shape for the circle. The resem-
blance between experiment and theory is remarkable for
both cavities. We believe these results in combination
provide strong evidence that chaotic and nonchaotic scat-
tering in ballistic cavities indeed give rise to the experi-
mentally observed difference in transport

An important issue in interpreting the experimental
results is the influence of small-angle scattering. The
first quantitative theoretical treatment was given by Lin,
Delos, and Jensen [8]; they emphasize that small-angle
scattering in a circle changes the classical distribution
of areas from a power law to an exponential, but one
whose characteristic area is different from that of a
stadium with the same geometric area. Thus one must
seriously consider the effects of any disorder even when
the transport mean free path is large. We have carried out
quantum calculations for the stadium and circle billiards
in the presence of a smooth disordered potential. The
disorder is formed by choosing a random value for
the potential at every fifth lattice site (within a range
[—Wd;, /2, Wd;, /2]) and linearly interpolating in between
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FIG. 3. The temperature evolution of the magnetoresistance
for the (a) stadium cavities, and (b) circle cavities. From top to
bottom, T = SO mK, 200 mK, 400 mK, 800 mK, 1.6 K, 2.4 K,
and 4.2 K. The dash-dotted lines are Lorentzian fits. For the
stadium cavities, the weak localization line shape is Lorentzian
at all temperatures. For the circle cavities, the line shape
is Lorentzian only at higher temperatures above 2.4 K. The
linearly decreasing triangular line shape develops fully below
400 mK, showing that phase coherence is essential in producing
this shape.
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FIG. 4. (a) Magnetoresistance for 48 nominally rectangular
cavities norma ize

' '
. n to1' d to a single cavity. The traces correspon to

the temperatures of 50 mK (top), 200 mK, 400 m, m
and 1.6 K (bottom), with each successive trace displaced
down war yd b 0.6 kA. In addition to the weak-localization

k at B = 0, eriodic modulation of the magnetoresistance
is present, probably caused by interference around p
orbit in the structure. Panel (b) shows that the Fourier power
spectrum exhibits double peaks at 14 and 16 cycles/kG. The
inset to pane a1 (a) contains an electron micrograph of the cavity.
Th

'
t t panel (b) delineates a possible perio ic or i

(dashed lines) inside the cavity (solid curve) for whic a
depletion of the 2D electron gas from etching has rounded the
corners.

behavior develops below =400 mK. It appears that the
ion er trajectories which enclose larger areas and con-onger
tribute to the negative magnetoresistance at the smhe smaller
8 fields become sufficiently phase coherent only at these
lower temperatures.

While the general WL lineshape discussed above is re-
lated to the full distribution of areas of classical paths,
semiclassical theory also suggests that interference be-
tween short nonuniversal paths should produce magne-
totransport effects particular to certain shapes. Indee,
some experimental evidence for the role of small area tra-
jectories has already been reported [10, , ]. g.
we present particularly clear evidence for the existence
of a stable periodic orbit in a nominally rectangular
cavity o . . p,f 1.2 X 075 m the magnetoresistance shows
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pronounced modulation as a function of 8 at low tempera-
tures ~400 mK. The Fourier power spectrum exhibits
double peaks at 14 and 16 cycles/kG. The average pe-
riod of 67 G corresponds to an area of 0.62 p, m2 for the
penetration of one flux quantum compared to an estimated
area of 0.79 p, m for the cavity. The inset shows a pos-
sible periodic orbit. Because this result is obtained in a
device containing 48 cavities, we be ieve this is strong
evidence for the existence of a stable orbit common to a
significant fraction of all cavities.

We thank D. J. Bishop for support and continued inter-
est in the course of this work.
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