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The theory of C P violation based on phases in weak couplings in the Cabibbo-Kobayashi-Maskawa
matrix requires the phase v = ArgV;}, (in a standard convention) to be nonzero. A measurement of -y
is proposed based on charged B meson decay rates to 7t K%, 7K+, 7t 7%, and the charge-conjugate
states. The corresponding branching ratios are expected to be of the order of 107°.
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At present direct evidence for C P violation comes ex-
clusively from the decays of neutral K mesons. One
theory of this phenomenon is based on phases in the
Cabibbo-Kobayashi-Maskawa (CKM) [1] matrix Vg,
which describes the weak charge-changing couplings of
left-handed quarks i = (d, s,b) of charge —1/3 with left-
handed quarks @ = (u,c,t) of charge 2/3. By choos-
ing five relative quark phases, one can take the ele-
ments of V' along and just above the diagonal to be
real (see, e.g., [2]). In this convention, taking account
of the observed magnitudes of elements, only V,;, and
Vid can have significant nonzero phases. The observed
decays K1 — ntm~ and 7970 of the long-lived neutral
kaon and the charge asymmetry in semileptonic K, de-
cays can be ascribed to a CP-violating mixing of K°
and K° arising from these phases. The CKM model
of CP violation also predicts small differences in the
ratios ny- = A(Kp — ntn~)/A(Ks — ntn~) and
noo = A(Kp — m7%)/A(Ks — n°7°). Two recent ex-
periments [3,4] reach different conclusions about whether
N+— = Moo, and a satisfactory alternative remains a “su-
perweak” theory of direct K°-K° mixing [5].

A fertile ground for testing the CKM model of CP vi-
olation involves the decays of mesons containing the fifth
(b) quark [6]. Unequal rates for decays of the mesons
BY = bd and B° = bd to CP eigenstates like J/i K
can be interpreted crisply in terms of the weak phase
ArgViq, without complications from strong final-state
interactions. However, the presence of B%-B° mixing,
needed for the rate asymmetry, complicates the identifi-
cation of neutral B mesons.

The decays of charged B mesons can manifest CP vi-
olation in the form of unequal rates for such processes as
Bt — n°K* and B~ — 7n°K~. While the charge of a
B meson is easily determined, strong final-state interac-
tions are required for such rate differences. Differences
in strong final-state phases among different eigenchannels
are expected to be small and uncertain. Thus, except in

a few particular cases (7], it has usually been assumed
that information on CKM phases cannot be extracted
from the study of charged B decays alone. Such decays
can play useful auxiliary roles in the separation of final-
state interaction effects from weak phases when decays of
neutral B mesons to CP eigenstates are also measured
[8-10].

In this Letter we describe a way to obtain the weak
phase v = ArgV); from the rates for the decays of
charged B mesons to 7tK°, 7°K*, 7t70 and the
charge-conjugate states. We expect equal rates for B* —
7+7% and B~ — 777 on rather general grounds, and
equal rates for BY — 7+ K°® and B~ — 7~ K° as a re-
sult of a specific assumption to be noted below. The
rates for Bt — 7°K* and B~ — 7K~ can differ if
CP is violated, but it is not necessary to measure a CP-
violating observable in order to obtain . The corre-
sponding branching ratios are expected to be of the order
of 1073, which is the level at which decays of B mesons
to two light pseudoscalars have already been seen [11].

The method relies upon an SU(3) relation between the
amplitude for Bt — 7t 7%, which has isospin I = 2, and
the isospin-3/2 amplitude in B — 7K. SU(3) breaking
is also introduced, assuming that the two-body hadronic
decay amplitudes are factorizable. Other applications
of SU(3) to decays of B mesons to pairs of light pseu-
doscalars have been considered in Refs. [12-15]. A more
general recent discussion is contained in Ref. [16], where
several new tests of the SU(3) assumption are suggested.
Other measurements of time-independent B decay rates
to pairs of light pseudoscalars also can determine weak
and strong phases [17].

The weak phase of the isospin-3/2 wK amplitude is
expected to be £+ for B* decays, while the strong phase
does not change sign under charge conjugation. The weak
phases of the amplitude for B¥ — 7+tK° and B~ —
7n~ KO are both expected to be 7 under the assumption
that weak annihilation graphs do not contribute to the
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decay. (We shall suggest a test of this assumption.) Two
triangle relations satisfied by amplitudes, which include
information from the rates for B¥* — 7m0K*, then allow
one to separate out the desired weak phase v modulo a
discrete ambiguity.

We consider charmless decays of B mesons to two light
pseudoscalar mesons within SU(3) [12,13]. The opera-
tors associated with the four-quark transition b — qua
and the direct (“penguin”) transition b — ¢ (¢ = d or
s), when combined with the triplet of B meson states,
lead to a decomposition of all strangeness-preserving and
strangeness-changing decay processes in terms of five
SU(3) reduced amplitudes. As shown in Ref. [12], this
algebraic decomposition is equivalent to a simpler graph-
ical expansion. The six graphs which contribute are illus-
trated in Fig. 1 [14]. They consist of a “tree” amplitude T’
(T"), a “color-suppressed” amplitude C' (C’), a penguin
amplitude P (P’), an “exchange” amplitude E (E’), an
“annihilation” amplitude A (A4’), and a “penguin annihi-
lation” amplitude PA (PA’). The unprimed amplitudes
stand for strangeness-preserving decays, while the primed
ones represent strangeness-changing processes. These
amplitudes are related by simple CKM factors. In par-
ticular,

T')T=C')C=EJE=A/JA=r,, (1)

where 7, = Vis/Vua = 0.23. The set of six graphs is
overcomplete. They appear in all processes of the type

ol
Kol

A A PA, PA’

FIG. 1. Diagrams describing decays of B mesons to pairs
of light pseudoscalar mesons. Here g = d for unprimed ampli-
tudes and 5 for primed amplitudes. (a) “Tree” (color-favored)
amplitude T or T’; (b) “color-suppressed” amplitude C or C’;
(c) “penguin” amplitude P or P’ (we do not show intermedi-
ate quarks and gluons); (d) “exchange” amplitude E or E’;
(e) “annihilation” amplitude A or A’; (f) “penguin annihila-
tion” amplitude PA or PA’.
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B — PP in the form of five linear combinations, corre-
sponding to the five SU(3) reduced matrix elements.

To apply SU(3) to the three decay processes, BT —
770, 7t K° 79K, we write the corresponding ampli-
tudes in terms of their graphical contributions:

1

A(B+ — 7T'+7T0) = —\—/_E(T + ). (2)
ABT - ntKY =P + A", (3)
ABT - n°K*) = ——1—§(T’ +C'+ P + 4. 4)

Here, for instance, the combinations C’/ + 7" and P’ + A’
form two of the five linearly independent combinations of
graphical contributions. We immediately find

V2A(BT — n°K*) + A(Bt — 7 KY)

=7 V2ABY - 7t1%) . (5)

This relation is described by a triangle in the complex
plane, as shown in Fig. 2. In the above equation, 7,
includes the relation between the primed and unprimed
amplitudes [Eq. (1)], as well as SU(3)-breaking effects.
The left-hand side of (5) corresponds to the I = 3/2 B —
mK amplitude (I” + C’), which is related to the I =
2 B — 7 amplitude (T + C) by the Weyl reflection
which interchanges s and d quarks [15]. Thus, the only
place SU(3) breaking can matter is in relating the T+ C

0 -0
LA

FIG. 2. SU(3) triangles involving decays of charged B’s
which may be used to measure the angle v. Here A%t =
A(B* — n°K*), AT® = A(BT — ntK°), A°” = A(B™ —
n°K~), A™° = A(B™ — K%, Af? = A(BT — 7+ n°),
A7% = A(B~ — n~°). The lower figure shows one of the
triangles flipped about the horizontal axis. This solution must

be chosen when |A°+| = |A°"| if v # 0.
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contribution in B — 7w to the TV + C’ contribution in
B — wK. This can be taken into account by noting
that the factorized amplitude of B* — w70 involves the
pion decay constant fr, whereas the I = 3/2 amplitude
in B — nK involves a factor fx ~ 1.2f,. We therefore
set 7y = Ty (fK/fr). Additional SU(3) breaking in form
factors for recombination of the spectator quark with one
of the b quark decay products is likely to be small and has
been neglected. Also, any resonances in the I =3/2 7K
and I = 2 w7 channels would be exotic (not formed of
a quark and an antiquark). Since no exotic resonances
have been seen, such effects are unlikely to disturb the
SU(3) relation much.

The charge-conjugate processes also form a triangle re-
lation. As we will see below, the two triangles are related
in a simple way, under an additional assumption.

The diagrams denoted by E, A, PA involve contribu-
tions to amplitudes which should behave as fg/mp in
comparison with those from the diagrams T, C, and P
(and similarly for their primed counterparts). This sup-
pression is due to the smallness of the B meson wave
function at the origin, and it should remain valid unless
rescattering effects are important. Such rescatterings in-
deed could be responsible for certain decays of charmed
particles (such as D° — K%p), but should be less im-
portant for the higher-energy B decays. In addition, the
diagrams F and A are also helicity suppressed by a factor
May,d,s/Mmp since the B mesons are pseudoscalars.

A simple test of the suppression of the amplitudes
E, A, PA would be the following. If rescattering ef-
fects are small and the diagrams E, A, and PA can be
neglected, the rate for B —» K+ K~ will be suppressed
relative to B — w7~ since the amplitudes for these
processes are given by

A(B® » ntn7) = —(T 4+ P+ E + PA), (6)

A(B® - K*K~) = —(E + PA) . %

Assuming that the amplitude A’ can be neglected in
(3) and (4), the phases in the decay amplitudes and those
for the charge-conjugate processes have simple relations
to one another. The phase of the P’ amplitude, which
is expected to be dominated by the top quark loop [18],
should be approximately ArgV;;V;, = m. Then we may
denote

ABT - 1tK% = A(B- - 7 K% = P' = —ape®?
(8)

where ap is real. Note that the rates for the process and
its charge conjugate are equal, which would not neces-
sarily be so if A’ # 0 in Eq. (3). The equality of these
rates thus helps to test our assumptions. Using this as-
sumption [and SU(3)], the triangles corresponding to the
processes in (5) and their charge conjugates have a side
in common (P’), as shown in Fig. 2.

In addition, taking account of the factor which relates
T + C to T' + C’ [including SU(3) breaking] and using
ArgV) Vyus =7, we find

FuV2ABT - 1710 = —(T' + C') = are¥Te™
(9)

while
FuV2A(B™ — 1~ n0) = ape¥Te ™ | (10)

with a7 real. The rates for these two processes are equal
because they involve a single weak phase and a single
strong phase. The difference in phase between these two
amplitudes is just 2v.

The third side of each amplitude triangle is provided
by the rate for the decay Bt — n°K+ or B~ — n°K~,
as shown in Fig. 2. Here A%t = A(B* — n°K™),
AT0 = A(Bt — 7ntK?), A°- AB- — n°K7),
A(B~ — 7~ K%, A0 = AB* — 70,
A7 A(B~ — 7 7%). Modulo a twofold ambigu-
ity which corresponds to flipping one triangle about the
horizontal axis, the rates determine the shapes of the tri-
angles and hence the difference 2y. The flipping of one
triangle corresponds to interchanging v and ép — 6. In
general, CP violation is expected to show up as a differ-
ence in rates between B — 7°K* and its charge con-
jugate, since two CKM amplitudes with different phases
interfere in this process. The crucial point in determin-
ing ~ is that the magnitudes of these two amplitudes are
separately measured in B* — 7tK° and Bt — 7tn0.
If 6p — 67 = 0, we will not observe such a difference in
rates. In that case, however, we would have to choose the
lower part of Fig. 2, since only this configuration would
correspond to a nonzero value of 4.

Figure 2 will permit the measurement of 7 if each
of the decay rates can be measured with sufficient ac-
curacy. Explicitly, defining a = |A*?] = |A70, b =
(fx/f)ruV2|ARR| = (fic/ fr)ruV2IAZD), ¢ = V2]|A%F,

¢ = /2|A%|, one has

4absiny = +{[(a + b)% = ?][c? — (a — b)?]}}/2
t{ce '} (11)

S
S
[Tl

The present data on B® decays to pairs of pseu-
doscalars [11] do not allow one to distinguish between
7~ K+ and 77~ final states. The combined branching
ratio is about 2 x 10~%, with equal rates for 7~ K+ and
m+ 71~ being most likely. If this is true, the amplitudes T’
and P’ have about the same magnitude, so that the short
sides of the triangles in Fig. 2 are probably about 1/4 to
1/3 [= (fx/fr)Tu] the lengths of the other two sides.
Then the “long” sides of the triangle must be measured
with fractional accuracies of about (fx /fr)r.6v in order
to achieve an accuracy of 67 in the angle . For example,
to measure v to a statistical accuracy of about 10°, one
probably needs fractional errors of about 1/20 in ampli-
tudes, or 10% in rates. This would require at least 100
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decays in each channel of interest.

We end with some comments about other ways of mea-
suring weak phases.

(1) Another measurement of v from charged B decays
uses the processes B — K+*D0 — K*D°, K*Dcp,
where Dcp denotes a C P eigenstate [7,19]. The three Bt
amplitudes and their charge conjugates obey two triangle
relations similar to the above. Here too the angle v can
be measured without an observation of CP violation in
B* — K*D¢p, even when the final-state phase differ-
ences are too small to detect. While BY — K+ D% may
be strongly color suppressed, all the measured rates are
expected to be of comparable magnitudes in the method
presented here.

(2) The present method uses B decay modes with
rates similar to B® — w+7~ decays. The use of n¥n~
decays requires tagging the neutral B meson flavor at
time of production, and suffers from uncertainties asso-
ciated with penguin amplitudes [8]. These uncertainties
can be eliminated by a complete isospin analysis of all
charge states in B — 7 decays [9], or at least esti-
mated by relating via SU(3) the rates of B® — n+7~ and
B° — 7~ K* [15]. Information from additional n7, 7K,
and K K branching ratios of charged and neutral B’s can
be combined with the rates mentioned here to further
eliminate ambiguities and constrain other weak phases
[16,17].

To summarize, we have shown that measurements of
the rates for charged B decays to 7K and 7, together
with a simple SU(3) relation, suffice to specify the geome-
try of amplitude triangles from which one can extract the
weak phase v = ArgV%,, where V,; describes an element
of the CKM matrix. No final-state-interaction phases
need be specified. A nonzero value of 7 in accord with
other analyses of parameters in the CKM matrix would
provide valuable confirmation of a popular model of CP
violation.
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