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Simulation of Structure Formation in an Electrorheological Fluid
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The temporal evolution of three-dimensional structure in an electroheological (ER) fluid is examined

by a computer simulation. A parameter 8 characterizing the ratio of the Brownian force to the dipolar

force is introduced. For a wide range of 8, the ER Auid has a rapid chain formation followed by aggre-

gation of chains into thick columns which has a body-centered tetragonal lattice structure. The Peierls-

Landau instability of single chains helps formation of thick columns. If the Brownian force is very small,

the ER system may be trapped in some local energy-minimum state.

PACS numbers: 82.70.6g, 61.90.+d, 64.90.+b

Electrorheological (ER) fluids, often referred to as
smart fluids, have a wide variety of applications in indus-

tries and technologies. A typical ER fluid consists of a
suspension of fine dielectric particles in a liquid of low

dielectric constant [1]. lts effective viscosity increases

dramatically if an electric field is applied, and when the
field exceeds a critical value, the ER Auid turns into a
solid. These phenomena occur in milliseconds and are re-
versible.

The structure is fundamental in understanding the
physical mechanism and properties of ER Auids. Experi-
ments find that upon application of electric field, dielec-
tric particles in ER Auids rapidly form chains which then

aggregate into thick columns [2-5]. A theoretical predic-
tion [6] of a body-centered tetragonal (bct) lattice as the
ground state of the thick columns has recently been
verified by experiments [2]. The issue of dynamics of
structure formation in ER fluids is under extensive inves-

tigation. Since Kamien and Nelson recently pointed out
that phase transition in ER fluids is related to the physics
of directed polymer and quantum mechanics of bosons in

2+1 dimensions [7,8], the interest in the issue has fur-
ther been enhanced.

Two-dimensional (2D) computer simulations were first

employed to investigate the issue. If thermal fluctuations
are ignored, 2D simulations find separated single chains
when the short-range repulsive force is —1/r ' or mostly
double-width strands if the repulsive force is exponential
[9]. Computer simulations on the same model of ex-
ponential repulsion with thermal fluctuations found many
thick columns of close-packed triangular lattice [10]. Ex-
trapolation of the 2D results to three-dimensional (3D)
systems, however, is hindered.

There have been a couple of 3D simulations of ER
fluids reported. Whittle [11] and Heyes and Melrose
[12] only examined the initial aggregation process in their
3D simulations peripherally. The simulations by Bonne-
caze and Brady [13) include the full hydrodynamics and
electrostatics, but are performed at zero temperature,
thus do not give information on the structure formed.
Recently, Hass reported that a regular lattice was not
formed in his 3D simulation [141. However, his simula-
tion ignores the thermal fluctuations which are important

in formation of thick columns [5].
To clarify the issue, we consider a monodisperse sus-

pension of spherical dielectric particles in a nonconduct-

ing liquid. The particles have diameter o and dielectric

constant ez. The liquid has dielectric constant ef and

viscosity g. The system is confined between two parallel

electrodes, planes z =0 and z =L. When there is no volt-

age applied, the particles are randomly distributed

throughout the fluid. In an electric field, each particle
obtains an induced dipole moment, p=aef(tT/2) Ei~3

where tt =(ep —ef)/(et, +2ef) and Ei~ is the local field.

The motion of the ith particle is described by a Langevin

equation

mdzr;/dt z=F; —3trortdr;/dt+R;(t),

where F; is the electric force and —3xo gv; is the Stokes'

drag force, the leading hydrodynamic force on the parti-
cle. As was done in other simulations [9-12,14], we take
the dipolar approximation. The role of higher order mu)-

tipoles will be discussed later. A random Brownian force
R;(t) in Eq. (1) represents the net effect of collisions of
solvent molecules on the particle.

We have found that the thermal motion plays a very
important role in the structure formation of ER fluids.

Though for a typical ER fluid the dipolar energy is much
stronger than the thermal energy, (p /efrs )/kttT-10,
the thermal energy cannot be ignored. Because of the
Peierls-Landau instability of one-dimensional solid, a ra-
tio of the thermal energy to the lowest phonon excitation
energy of a single chain is much bigger than unity [5].
The thermal energy is more than sufficient in creating
thermal vibrations of the single chains which help the ag-
gregation process. We will introduce a parameter, 8,
characterizing the ratio of the dipolar force to the
Brownian force. Our simulation finds that for a wide

range of B, with the help of the Brownian force, the ER
fluid evolves into thick columns which have the bct lattice
structure.

The dipolar force acting on the particle at r; by a parti-
cle at r~ is given by

f i. =(3p /efr J)[e,(l —3cos OJ) —ettsin(28i. )], (2)

where r;t =r; —rj and 0( 9;l ( tr/2 is the angle between
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the z direction and the Joint line of the two dipoles. We use e, as a unit vector parallel to r;j and eii as a unit vector

parallel to e, x(e, xE0). A dipole p inside the capacitor at r;=(x;,y;, z;) produces an infinite number of images at

(x;,y;, —z;) and (x;,y;, 2Lk+'z;) for k + I, + 2, . . . . The force between a dipole and an image has the same form as

Eq. (2). The jth particle and its infinite images produce an electric force on the ith particle,

p 4$ jr (xi xj ) $jfpij.2 " 3 3 SR'Zg' SXZg
lJ, Z K ) cos cos

cfL s I pij L L L
r

p ~ 4$ jr (Jii gj )
ijy= 4 ~ Kl

ffL s l pij

SXPgg SKI. SZZJ'
cos

L
cos

L

SXP&g . SXZI' SXZJ'fj, - 4 +4$ jr Ko sin cos
ffL s l L L L

where p;j =j(x;—xj) +(y; —yj) and Ko and Kl are modified Bessel functions. The force on the ith particle by its
own images is in the z direction and denoted as f~'",

fself P3 1 1

zi4 s- i (z; $L)4—
1

(z;+$L)4
(4)

To simulate the hard spheres and hard walls, we introduce a short-range repulsive force between two particles

f j' (3p e„/ufo )exp[ —100(rjjfr I )]—
and a short-range repulsion between a particle and the electrodes

f,"'" (3p e,/efL ) [exp[ —100(z;jo —0.5)] —exp[ —100((L—z;)/o —0.5)]j .

(5)

(6)

Now F; in Eq. (I) is given by F;=gj~i(fij+ ffj' )
+f; '+f; "'. The random force R;(t) has a white-noise

distribution, (R;,(0)R; jf(t)) 6jrk jjTaflb, fj8(t) and

&Rf,) 0 where kjf is Boltzmann's constant and T is the

temperature. We introduce a subinterval r which is well

defined in the Brownian motion [15]. This time r is

longer than the molecular collision time, but quite small

on macroscopic scale, therefore, shorter than the time

steps used in integration of Eq. (I). During r we can
treat all functions of time except R(t) as constants.

Then, the average of Rf(t) over r, R;,(t, r) =, (I/r)
x f,'+'R;, (t')dt', has a Gaussian distribution

8'(R;,(f, r)),j exp[ [R;,.(f—, r )]'/20 }, (7)

W(X, ) -(lrq) 'j'exp( —X'/q), (8)

where q 20zr f,'+ 'y (g)dg is independent of r. This
implies that our result is independent of a specific choice
of r, though the value of r is not very uniquely defined.

The intrmsic time scale in Eq. (I) is to m/3jrorf. We
take t tof*, F; FOF; where F0=3p kffy,

QR; (t), and r; in; in Eq. (1). The scaling transfor-
mation produces a new equation,

?; +r;* A(F,*. +8R; ), (9)

where g Ffi/3jrcrrl(fr/ffi) and 8 = 0,/Fo. It is clear that

where 0 +6jrkfjTofljr For any. X, fi+ 'ifi(p)

&R;,(g)dg with a smooth function y on a time step

Bf ) r, we can divide bt into many subintervals of dura-

tion r. X, has a probability distribution

I/A is related to the Mason number, a ratio of the viscous

force to the dipolar force. 8 is a ratio of the Brownian

force to the dipolar force and I/A8 is related to parame-

ter X=(p /ufo' )/kjjT [16]. Since the Brownian force

depends on both temperature T and viscosity rI, 8 is a

better parameter in discussion of the Brownian motion

than k which is independent of fl.

Equation (9) indicates that the final structure of our

system is related to the two constants A and 8. For an

ER system of alumina particles in petroleum oil, ef 2,

e~-8, r1-0.2 P, a-10 pm, and the mass density of the

particle p-3 g/cm3. At Efi 3 kV/mm and T 300 K,
the ER fiuid will be solidified in experiments. We esti-

mate t0-8.33x10 7 s and A —10 under these condi-

tions and choose r 0.4fo to meet the aforesaid condi-

tion. Then, 8-10 '. Our simulation takes 3 and 8
around the above values.

We have applied two Runge-Kutta methods to in-

tegrate Eq. (9): (I) of a fixed step size and (2) of adap-

tive step-size control. Though both give the same results,

the method of adaptive step-size control is much more

efficient, in which the time step Bt varies according to
moves of particles [17]. We specify a criterion br, . If
the largest position change among all particles after 8'g is

smaller than Br„ the time step 8f in the sub~~at in-

tegration will be increased. Otherwise, bf will be re-

duced. In both methods, Eq. (8) must be employed to

treat the Brownian force [15]. As mentioned before, the

integration of Eq. (9) is independent on r.
Our simulation has N 122 particles in a box with

Lz Ly 5a and L, = 1 4o which has a volume fraction

206



VOLUME 73, NUMBER 1 PH YSICAL REVIEW LETTERS 4 JULY 1994

"" ooooe 14.00

9.33

4.6T

0.00 0.00
4.86

.00

0.00

FIG. l. In the initial state, dielectric particles are randomly

distributed.

0.91

FIG. 3. The configuration after 20000 time steps.

p =0.183. Theoretical calculation has already shown that
if L, (6a, the single-chain structure has a lower energy
than that of thick columns [6]. Therefore, we take a rela-

tively big L, . A periodic boundary condition is imposed
in the x and y directions. At every step, we apply the fol-

lowing three order parameters to characterize the struc-
ture [18),

jv

p, = —g exp(ib,"r;), (10)

where three reciprocal lattice vectors of the bct lattice
bl = (2z/a) (2e„'/J6 —e, ), b2 = (2z/o ) (2e /«J6 e, ), —and

b3 4', /cr. The unit vector e, is (001) lattice axis along
the field direction, but e„' and ez are the bct lattice axes
(100) and (010). In the structure formation, the ER sys-
tem may rotate around the z axis. Therefore, when

measuring pi and p2, we always rotate e„' and e~ about
the z axis to find a position which maximizes pip2. The
order parameter p3 characterizes the formation of chains
in the z direction. The other two parameters pi and p2
characterize the structure in the x-y plane.

The initial state is shown in Fig. 1 where the dielectric
particles are randomly distributed and the three order pa-

rameters are vanishing. At t =0, a strong electric field is

turned on and the particles begin to move. It can be no-

ticed from Fig. 2 that after the first 5000 steps (about 10
ms), single chains are in shape but the lateral ordering is

very weak. The structure has p3=0.617, while pi =0.32
and pz=0. 16. At the end of the next 15000 steps, we

have p3 =0.92, but pl and p2 remain around 0.4-0.5 (Fig.
3). Clearly, the ordering in the field direction is almost
perfect and the lateral ordering is building. The structure
after 90000 steps (Fig. 4) clearly shows excellent order-

ings both in the field direction and in the x-y plane. Sin-

gle chains have been aggregated into a bct lattice struc-
ture. Three order parameters are p3 =0.991, p) =0.915,
and p2=0.850. Further time evolution shows little im-

provement and the process becomes extremely slow.
The projection of the 3D structure in Fig. 4 onto the

x-y plane has a square lattice on the x-y plane (Fig. 5).
For example, the marked square has its side =v I 5cr.
=1.225', marking an ideal bct lattice. The four chains
at the corners have 14 particles straight along the field

direction. The chain at the center has 12 particles close
packed with the four neighbor chains. The structure is an

ideal bct lattice if the chain at the center does not have

one particle missing. The thick dots in Fig. 5 also indi-
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FIG. 2. The configuration after first 5000 time steps.
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FIG. 4. The configuration after 90000 time steps.
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FIG. 5. Projection of the configuration in Fig. 4 to the x-y
plane.

increases, the system may be easy to develop into thick
columns of a polycrystalline structure which have several
bct lattice grains with the same (001) axis but difl'erent
(100) and (010) axes [2]. Finally, we compare the time
scales in our simulation with that in the experiments.
The rapid chain formation takes about 10 ms or longer in
our simulation. This result, consistent with other simula-
tions [9], is longer than the experimental result [19]. The
reason for this diff'erence may lie in the fact that we ig-
nore the contributions from higher multipoles, charges,
and currents in ER fluids which begin to draw attention
recently [20].

This research is supported by the Office of Naval
Research Grant No. N00014-93-1-0582.

cate that the chains are straight in the field direction.
Figure 6 shows the development of p; (i =1,2, 3) with

time. The formation of single chains is rapid. In about
several milliseconds, p3 reaches 0.6. After 0.4 s, p3 Is

above 0.9. The building of lateral ordering is relatively
slower than the formation of chain. It takes about several
seconds to have pi and p2 reach 0.8. The strong fluctua-
tions of pi and p2 after the formation of chains are con-
sistent with experiments [3], signifying the aggregation of
separated chains into columns.

We have also done some tests to verify the importance
of Brownian force in the development of ER solid struc-
ture. If we ignore the Brownian motion completely, or let
B be extremely small, such as B-10 s, the ER fluid has
a rapid chain formation followed by a kinetic trapping
into a complicated structure [14]. After a long time, the
structure has p3 remaining at about 0.7 but pl and p2
remain 0.3 or below. The structure in such a case needs
further study because it may be related to directed poly-
mers [7]. When B&)1, the ER system has too many vi-

brations, preventing the formation of a stable structure.
However, for quite a wide range of B, the ER fluid has a
rapid chain formation, followed by an aggregation of
chains into the bct lattice structure with three order pa-
rameters close to or above 0.9. We have also found the
bct lattice when volume fraction III~ 20%. If It further
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FIG. 6. The order parameters change with time after the

electric field is applied. The time unit is seconds.
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