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Measurement of Cavity-Polariton Dispersion Curve from Angle-Resolved Photoluminescence
Experiments
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We study the photoluminescence of quantum well excitons imbedded in monolithic microcavities.
In the strong coupling regime, a coupled-mode situation develops, the cavity polariton. We describe
a model of the photoluminescence phenomenon in this regime, which by comparison with experiments
enables us to determine the cavity-polariton dispersion curve. An excellent agreement with a theoretical

model is found.

PACS numbers: 42.50.—p, 71.35.+z, 73.20.Dx, 78.45.+h

Since the early studies of Lukosz and Kunz [1], Drex-
hage [2], and Kleppner [3], great attention has been de-
voted to the study of the modification of the photon-matter
interaction due to quantized electromagnetic modes near
surfaces [1,2], in microcavities [4-7], and in photonic
band-gap materials [8], the matter being in various forms
like atoms, dye molecules, semiconductors, etc. One aim
is to control the spontaneous emission in its intensity and
emission pattern [4], in its spectral properties [5,6], and
in its fluctuations [7] (i.e., generation of squeezed photons
states). Another aspect of fundamental interest is the pos-
sibility of generating well-defined atom-photon quantum
states or nonlocal field states, the so-called Schrodinger
cats [9].

The photon-matter interaction has two distinct regimes:
(i) the weak-coupling regime, where the system’s eigen-
states are a perturbation of the uncoupled system; and
(ii) the strong-coupling regime, where coherent Rabi os-
cillation between the atom and photon states can occur.
Both have been studied and lead to very different and in-
teresting situations. The strong coupling existing between
photons and quantum well (QW) excitons imbedded in
all-semiconductor planar microcavities has been recently
observed, first at low temperatures, and more recently at
room temperature [10,11]. The physical picture is the
following: A QW exciton state, with a well-defined trans-
verse k momentum (k//), is coupled to a single cavity-
photon mode with the same in-plane wave vector, due
to momentum conservation caused by the in-plane trans-
lational invariance of the electronic and photon systems.
This selection mechanism explains why the single atomic
picture of two coupled levels applies here, although we
are dealing with a pair of two-dimensional continuum
systems. For a given k, a single photon mode and the
single coupled exciton interact with an equivalent oscilla-
tor strength of about 10'? atoms [12]. Provided that the
exciton momentum scattering time (dephasing time) and
the photon-mode decay time (photon lifetime) are longer
than the Rabi period, an oscillating regime between the
exciton and photon state develops, the very definition of
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the strong-coupling regime. It must be remarked that this
phenomenon can occur not only under strong applied opti-
cal fields, but also when no field is applied, leading to the
so-called vacuum field Rabi splitting in atomic physics
[13] and to cavity polaritons in semiconductor microcav-
ities [11]. Several descriptions of this phenomenon have
been provided, based either on the classical dispersion
model [14,15] of vacuum field Rabi splitting or more re-
cently on the quantum description of exciton and photon
modes [16,17]. The splitting () is a function of the elec-
tric dipole matrix element of the atomic transition (d), the
number of atomic oscillators (N,,), or, in semiconductors,
a function of the oscillator strength (fos.) and the num-
ber of quantum wells (Now) and the cavity size (Vcayity)
(i.e., the length for a planar cavity or the volume for a 3D

cavity):
QO xd Nat o foscNQW )
Vcavity Vcavity

As remarked elsewhere [10], this situation is very reminis-
cent of the strong-coupling regime observed about thirty
years ago in bulk semiconductors, leading to excitonic po-
laritons [18]. In that case, it was remarked by Hopfield
that, due to the energy and k conservation occurring in an
infinite and translationally invariant medium, the Rabi os-
cillation would occur under resonant conditions between
an exciton state and the only photon state to which it is
coupled, i.e., at those exciton and photon states at the
crossing point of their respective dispersion curves.
While experiments previously reported have dealt with
the optical response of the coupled exciton-cavity photon
mode as seen through reflectivity or transmission, it is im-
portant to evaluate how much the strong-coupling regime
modifies the luminescence process, both for fundamental
reasons and for applicational purposes. The situation here
is quite different from atomic physics [19]: An atomic
beam, having a monochromatic emission line, can only
interact with a single mode of the cavity, while in a semi-
conductor microcavity, photons and excitons have an in-
plane dispersion. During the photoluminescence process,
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a number of states with different k,, are created. It is
known that this makes the analysis of bulk polariton lumi-
nescence somewhat difficult.

A sketch of a semiconductor microcavity is shown in
Fig. I. The low (high) index material is usually AlAs
(GaAs), where the refractive index is n = 2.96 (3.54).
For optical pumping it can be useful to use Al,Ga;_,As
(x = 10%) instead of GaAs. The quantum wells are
Ing3Gagg,As and 75 A thick, allowing experiments in
reflection and transmission. By design, the cavity is
wedge shaped, leading to a variation of the relative
position of the QW exciton and the cavity mode across
the sample. Figure 2 shows a photoluminescence (PL)
spectrum for a series of emission angles. Figure 3 is a plot
of the positions of the PL peaks as a function of the in-
plane photon wave vector for three different positions on
the sample. We will show that, due to the peculiarity of
the emission process of the cavity polariton, the position
of the PL peaks allows the direct determination of the
cavity-polariton dispersion curves, as shown in Fig. 3.

In the bulk, it has been shown through a long se-
quence of important contributions [20—27] that excitonic
polaritons have a luminescence process essentially differ-
ent from the weak-coupling description, where an exciton
is transformed into a photon state through a mechanism
that can be modeled with a perturbative approach, such
as Fermi’s golden rule. In the exciton-polariton picture
the emission process consists in the random-walk trans-
fer of the polariton, regarded as a local property of the
system, towards the crystal surface, and its transmission
as an outside photon at the surface. Also essential is the
polariton thermalization process, because both the propa-
gation to the surface, which is characterized by the
polariton group velocity and mean free path, and the trans-
mission coefficient are very dependent on the exciton en-
ergy and wave vector. In addition, excitonic polaritons
undergo a relaxation bottleneck at the resonance energy,
where they can eventually connect to an outside photon
state. The bottleneck leads to a peaked emission in this
region [24]. Considering the contribution of generation,
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FIG. 1. Sketch of the central region of an Al,Ga,-,As/
In,Ga,_,As semiconductor microcavity. The thick line: vac-
uum field intensity. The narrow line: Al content (positive val-
ues) and In content (negative values).
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FIG. 2. Series of photoluminescence spectra at T = 77 K, for
an emission angle from —12° to 41°. The Fabry-Pérot at normal
incidence is resonant with the quantum well exciton.

energy and momentum relaxation, and recombination, it
is possible, although cumbersome, to calculate an energy,
angle, and position dependent polariton distribution func-
tion f(E,0,z) [20]. It was evaluated theoretically [20]
and demonstrated experimentally by resonant excitation
experiments [26] that the strong-coupling regime of the
exciton polariton leads to quite inefficient luminescence,
even in the purest semiconductors, which can be seen as a
paradox: This is a system where the transformation of a
crystal excitation into a photon is as fast as it can be, but
the price to pay is that this transformation is not an irre-
versible process anymore. Moreover, the coherent eigen-
state is badly coupled to the outside photon states, because
the random walk to the surface is very long compared to
exciton destructive events and the transmission coefficient
is most often very weak.

The bulk polariton luminescence line shape is then
given by the escape rate of polaritons at the surface in
the observation solid angle [27:]

I(E, 0ou) dQow = D fi(E, 0,2 = 0)pi(E)
i=up,lp
X vy ‘,'(E)T,'(E, 0in) dQiq

where the sum is over the upper and lower branch of the
polariton, f(E,6,z) is the polariton energy distribution
function at the surface, p is the polariton density of
states, v, is the component of the polariton group
velocity perpendicular to the surface, T the transmission
coefficient of a polariton incident at the surface into an
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FIG. 3. Cavity-polariton dispersion curves, deduced from
angle-resolved photoluminescence measurements, for different
resonance conditions. (a) Resonance at § = 0° (case of Fig. 2),
(b) resonance at § = 29°, and (c) # = 35°. The continuous
lines are theoretical calculations and the dashed lines are the
uncoupled exciton and cavity dispersion curves. The interac-
tion energy () and exact resonance position are determined
from the minimum splitting between both photoluminescence
lines. An external emission angle grid is drawn on (a).

outside photon, and the propagation directions 6;, and 6,
and solid angles d() are related by the Snell-Descartes
law. Although the energy and k;, selection rule are
already included in 6;,, 604, and T(E, ), it is instructive
to include them in the following form:

Z fi(Eaainsz = 0)p,(E)

i=up,lp
X Ug.i(E)Ti(E’ 0in)6(E - E(k))

X é6ky — (q - u/)u,/) dQin

I(E, Oout) dQoy =

I

Z II(E(k,L + q Sin(gout))) inn >

i=lp,up

where ¢ is the photon wave vector and u,, a unitary vector
in the direction of k. It follows that the line shape essen-
tially depends on geometrical, static (p,v,,T, etc.), and
dynamic f(E, 6, z) factors. Therefore, photoluminescence
of the bulk polaritons does not give direct information on
the polariton dispersion curve without an explicit calcula-
tion of the energy distribution function.

The cavity-polariton situation is quite different: As
cavity polaritons are a macroscopic property of the
microcavity, the luminescence process does not involve
any transport of excitation. Therefore, we can describe
the luminescence process just by the knowledge of the
distribution of the cavity polariton along its dispersion
curve and by the outside transmission coefficient of
such cavity polaritons. Because of the absence of a
perpendicular wave vector the cavity-polariton case is
simpler. As both the exciton and the cavity mode energy
only depend on k/,, the in-plane k selection rule reduces
the photoluminescence spectrum to a sum of two delta
functions:

I(E, Oou) Q0w = > filE, 0u)pi(E)TI(E, 6in)
i=lp,up

X 86(E — E(k//))
X 5(k// - (q- U//)U//) dQin

D> L(E,6:)

i=lp,up
X 8(E — E(gsin(fou))) dQin ,

and therefore the emission spectrum for a fixed incidence
angle should exhibit two lines whose position are directly
related to the cavity-polariton dispersion curve and the
relative intensities of which are a function of static
and dynamical factors. In the presence of homogeneous
or inhomogeneous broadening, the delta functions are
replaced by Lorentzian or Gaussian type lines but their
energy position is not changed as long as the broadening
is smaller than the energy separation of both lines. This
allows us to interpret Fig. 3 as dispersion curves of the
cavity polariton.

Cavity-polariton dispersion curves can be calculated
in different ways: (i) A classical local Lorentz oscilla-
tor model [14] can be included inside the Fabry-Pérot
cavity as a dispersive medium. Although applicable to
atomic physics, this model is not suitable for a semi-
conductor microcavity: It is independent of the Lorentz
oscillator position inside the cavity, it neglects the re-
flections from the Lorentz oscillator layer, and it under-
estimates the splitting by a factor of 2 [28]. (ii) The
classical Lorentz oscillator of model (i) that takes into
account the reflected waves at the quantum well inter-
faces [15]. This is sufficient enough to solve the weak-
nesses mentioned for (i). (iii) An extension of model
(ii) to use the transfer matrix of the quantum well layer
in the nonlocal susceptibility framework [28]. (iv) Full
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quantum mechanical treatment [16,17], which is usu-
ally done for a perfect lossless (i.e., closed) metallic
cavity. The full quantum mechanical treatment directly
gives the cavity-polariton dispersion curve vs the in-plane
wave vector k;;. Models (ii) and (iii) give the disper-
sion curves of reflectivity, transmission, or absorption
resonances in an open cavity as a function of the angle of
incidence 6, with k,, = gsin(#). Models (ii), (iii), and
(iv) are in very good agreement.

The continuous lines in Fig. 3 are theoretical calcula-
tions of the dispersion curve using model (ii). The fit-
ting parameters are the Rabi splitting energy ) (which
is directly related to the exciton oscillator strength fos
[11]) and the resonance energy between the exciton and
cavity mode. The exact resonance condition is deter-
mined when the energy separation of both lines is mini-
mum. The dashed lines are for the uncoupled disper-
sion curves. In this wave vector range the exciton can
be regarded as dispersionless and the cavity mode has the

usual E(k;/) = \/E(z) + czﬁzkf//ngff dependency. As can
be observed, an excellent fit is obtained for 1} = 7.3 =
0.3 meV (i.e., fosc =46 X 1012 cm*Z).

In conclusion, we have shown that the knowledge of
the cavity-polariton dispersion relation is essential in the
understanding of the photoluminescence process and that
angle-resolved photoluminescence measurements allow
the determination of cavity-polariton dispersion curves.
An excellent agreement with theoretical calculations is
found. This situation is very different from the bulk
exciton polaritons and from QW polaritons not in a cavity.
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